• 제목/요약/키워드: Test Temperature

검색결과 10,026건 처리시간 0.047초

온도측정에 의한 SPD용 배리스터의 성능평가에 관한 연구(I) (A Study on Performance Evaluation of SPD Varistor by Temperature Measurement(I))

  • 여인식;고영민;이기식
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.490-494
    • /
    • 2009
  • In this paper, how the temperature of a varistor changes when $10/350{\mu}s$ surge currents and/or DC leakage currents are applied on it, respectively, are investigated. The temperature change in varistor is related with injection energy and leakage current. which is the integration of power in time. By the surge current test, we found that the temperature jump is proportional to the level of surge current with slant 52.535 and has no relation with the ambient temperature. And by the DC leakage current test, the difference in temperatures between varistor and ambient is proportional to the magnitude of leakage current. The slope of measured line(the temperature difference vs. the leakage current) shows alteration around $100{\mu}A$. The varistors can not be used more than $100{\mu}A$ region any more. From the above experimental results, we can conclude that data of the surge current test and also those of DC leakage current test can predict the performance of varistors of which the surge protective devices are made.

50 kVA 주상용 몰드변압기의 설계 및 특성평가 (The Design and Performance Test of Mold Transformer for Outdoor Pole)

  • 조한구;이운용;황보국
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.132-137
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. In this paper, the temperature distribution of 50 kVA pole mold transformer for power distribution are investigated by FEM program and the temperature rise test of designed mold transformer carried out and test result is analyzed compare to simulation data. In this result, the designed mold transformer is satisfied to limit value of temperature and the other property is good such as voltage ratio, winding resistance, no-load loss, load loss, impedance voltage and percent regulation.

  • PDF

태양광무인기를 위한 박막형 태양전지의 입사각 및 온도에 따른 성능분석 (Effects of the Incidence Angle and Temperature on the Performance of a Thin-Film CIGS Solar Cell for Solar Powered UAVs)

  • 신동훈;김태호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.55.2-55.2
    • /
    • 2011
  • This research aims to study the effects of the incidence angle and surface temperature on the power generation performance of a thin-film CIGS solar cell for solar powered unmanned aerial vehicles (UAVs). The test rig consists of a unit CIGS solar cell is installed on a table whose angle is controlled manually. A K-type thermocouple is attached to the solar cell surface for temperature measurements. A solar module analyzer measures the voltage and current generated from the test solar cell. The solar module analyzer also calculates the maximum solar power and efficiency of the solar cell. All test data are acquired in a PC. Test results show that the solar cell efficiency decreases significantly with increasing incidence angle and increasing surface temperature in general. As the incidence angle increases from 0 degree to 90 degree, the solar cell efficiency decreases by 60%. The solar cell efficiency decreases by 10% with increasing solar cell surface temperature from $20^{\circ}C$ to $30^{\circ}C$, for exmaple. The direct cooling method of the solar cell using dry ice decreases dramatically the solar cell surface temperature, thus increasing the solar cell efficiency by 15%.

  • PDF

섬유보강 다공성 옥상녹화 황토콘크리트의 물리·역학적 및 온도변화 특성 평가 (Physical·Mechanical and Temperature Properties of Fiber Reinforced Porous Green Roof Hwang-toh Concrete)

  • 오리온;김춘수;김황희;전지홍;권완식;박찬기
    • 한국농공학회논문집
    • /
    • 제55권4호
    • /
    • pp.65-72
    • /
    • 2013
  • The physical, mechanical, water purification and temperature properties of fiber reinforced porous hwang-toh green roof concrete have been evaluated in this study. The effect of the depending on replacement ratio of blast furnace slag to cement was investigated such that the replacement ratio is varied to 0 % and 30 %. Also, the replacement ratios of hwang-toh were 0, 20 and 30 %. The polyvinyl alcohol fiber was used for the reinforcing fiber. A series of pH test, unit weight, void ratio, compressive strength, after purification and variation of temperature test have been performed to evaluate the performance, water purification effect and temperature properties of the fiber reinforced porous hwang-toh green roof concrete. The test results indicate that the physical and mechanical properties of fiber reinforced porous hwang-toh green roof concrete is affected by the replacement ratio of the blast furnace slag and hwang-toh contents. Results of purifying water showed that the water purification effect of porous hwang-toh green roof concrete is about 40 %. Also, the temperature properties test results indicate the green roof blocks using fiber reinforced porous hwang-toh green roof concrete have insulation and temperature reduction effect.

SP-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발(I) - 보일러 과열기 튜브 - (Development of Evaluation Technique of High Temperature Creep Characteristics by Small Punch-Creep Test Method (I) - Boiler Superheater Tube -)

  • 백승세;나성훈;나의균;유효선
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.1995-2001
    • /
    • 2001
  • In this study, a small punch creep(SP-Creep) test using miniaturized specimen(10${\times}$10${\times}$0.5mm) is described to develop the new creep test method for high temperature structural materials. The SP-Creep test is applied to 2.25Cr-lMo(STBA24) steel which is widely used as boiler tube material. The test temperatures applied for the creep deformation of miniaturized specimens are between 550∼600$^{\circ}C$. The SP-Creep curves depend definitely on applied load and creep temperature, and show the three stages of creep behavior like in conventional uniaxial tensile creep curves. The load exponent of miniaturized specimen decreases with increasing test temperature, and its behavior is similar to stress exponent behavior of uniaxial creep test. The creep activation energy obtained from the relationship between SP-Creep rate and test temperature decreases as the applied load increases. A predicting equation or SP-Creep rate for 2.25Cr-lMo steel is suggested. and a good agreement between experimental and calculated data has been found.

핫스탬핑용 보론강의 고온 성형한계선도 평가 연구 (Formability Test of Boron Steel Sheet at Elevated Temperature for Hot Stamping)

  • 한수식
    • 소성∙가공
    • /
    • 제26권2호
    • /
    • pp.121-126
    • /
    • 2017
  • The hot stamping process is an innovative forming method that could prevent the cracking of high strength steel sheets. The formability test of boron steel sheet using forming limit diagrams at elevated temperature is very complicated and time consuming job. In this paper, an alternative test method to evaluate the formability of boron steel in hot stamping has proposed. It measured the FLD0 instead of whole strain combinations of FLD with the tensile test machine and specially designed test rig. Test results shows that the proposed test method can simulate the plain strain condition fracture and can make the FLD of boron steel sheet at elevated temperature with less effort.

고온.고압용 3-way 볼밸브의 특성해석 (A Characteristic Analysis of High Pressure and High Temperature 3-way Ball Valve)

  • 이준호
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.180-184
    • /
    • 2012
  • 3-way ball valves have been mostly used for high temperature/high pressure valves using in petrochemical carriers and oil tankers, which requires high quality products with confidentiality and durability. As a larger disaster may be generated by leakage of oil or gas from valves, thus the present research applied a numerical analysis method with thermal-structural coupled field analysis and the performance test. The Max stress by parts was confirmed through thermal-structural coupled field analysis and develop the 3-way ball valve design, which is safe on operating condition. And its performance was verified by carrying out pressure test, leakage test and durability test for the manufactured 3-way ball valves with satisfying it's regulations.

한국형 고속전철 전동기 온도 특성 (Temperature Characteristics for Traction Motor of Korean High Speed Train)

  • 한영재;김기환;이태형;구훈모;김정철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.265-267
    • /
    • 2006
  • There are various elements that have influence on safety and reliability of high-speed railway vehicles. Among them, mechanical characteristics of traction motors are very important. Therefore, we verified that temperature characteristics have influence on damage and durability of these parts. We designed a measurement system for temperature test, and could measure the temperature of each device by the system. As the result of temperature test, we could confirm that the traction motors on Korean High-Speed Train satisfy the criteria. From this test, we get information of the traction motor about the temperature characteristic during running speed and running time.

  • PDF

GF/PP 복합재료의 충격파괴거동에 대한 온도효과 (Temperature Effect on Impact Fracture Behavior of GF/PP Composites)

  • 고성위;엄윤성
    • 수산해양기술연구
    • /
    • 제41권1호
    • /
    • pp.78-84
    • /
    • 2005
  • The main goal of this work is to study the effects of temperature and volume fraction of fiber on the Charpy impact test with GF/PP composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of 60^{\circ}C$ to -50^{\circ}C$ by impact test. The critical fracture energy increased as the fiber volume fraction ratio increased. The critical fracture energy shows a maximum at ambient temperature and it tends to decreases as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

계면 누수를 통한 자착형 방수시트의 저온 부착 특성에 관한 연구 (A study on the characteristic of adhesion on the low temperature concrete of self adhesive waterproofing sheet using interface leakage test.)

  • 최수영;김명지;이정훈;최성민;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.234-235
    • /
    • 2014
  • Recently, waterproof construction used to self adhesive waterproofing sheet in the actual field in winter for reduce cost and term. However self adhesive waterproofing sheet's quality is declined in low temperature condition. So, this study was to confirm on the low temperature condition of concrete substrate effecting the adhesion of self adhesion waterproofing sheet using interface leakage test. As a result of this study, self adhesion waterproofing sheet must not be used at temperature below 5℃. Also, adhesion between waterproofing sheet and concrete is declined in low temperature.

  • PDF