Journal of The Korean Association of Information Education
/
v.26
no.3
/
pp.197-207
/
2022
In this paper, we develop a machine learning based block code generation and recommendation model for the purpose of reducing cognitive load of learners during coding education that learns the learner's block that has been made in the block programming environment using natural processing model and fine-tuning and then generates and recommends the selectable blocks for the next step. To develop the model, the training dataset was produced by pre-processing 50 block codes that were on the popular block programming language web site 'Entry'. Also, after dividing the pre-processed blocks into training dataset, verification dataset and test dataset, we developed a model that generates block codes based on LSTM, Seq2Seq, and GPT-2 model. In the results of the performance evaluation of the developed model, GPT-2 showed a higher performance than the LSTM and Seq2Seq model in the BLEU and ROUGE scores which measure sentence similarity. The data results generated through the GPT-2 model, show that the performance was relatively similar in the BLEU and ROUGE scores except for the case where the number of blocks was 1 or 17.
International journal of advanced smart convergence
/
v.11
no.1
/
pp.19-27
/
2022
Across the world, 'housing' comprises a significant portion of wealth and assets. For this reason, fluctuations in real estate prices are highly sensitive issues to individual households. In Korea, housing prices have steadily increased over the years, and thus many Koreans view the real estate market as an effective channel for their investments. However, if one purchases a real estate property for the purpose of investing, then there are several risks involved when prices begin to fluctuate. The purpose of this study is to design a real estate price 'return rate' prediction model to help mitigate the risks involved with real estate investments and promote reasonable real estate purchases. Various approaches are explored to develop a model capable of predicting real estate prices based on an understanding of the immovability of the real estate market. This study employs the LSTM method, which is based on artificial intelligence and deep learning, to predict real estate prices and validate the model. LSTM networks are based on recurrent neural networks (RNN) but add cell states (which act as a type of conveyer belt) to the hidden states. LSTM networks are able to obtain cell states and hidden states in a recursive manner. Data on the actual trading prices of apartments in autonomous districts between January 2006 and December 2019 are collected from the Actual Trading Price Disclosure System of the Ministry of Land, Infrastructure and Transport (MOLIT). Additionally, basic data on apartments and commercial buildings are collected from the Public Data Portal and Seoul Metropolitan Government's data portal. The collected actual trading price data are scaled to monthly average trading amounts, and each data entry is pre-processed according to address to produce 168 data entries. An LSTM model for return rate prediction is prepared based on a time series dataset where the training period is set as April 2015~August 2017 (29 months), the validation period is set as September 2017~September 2018 (13 months), and the test period is set as December 2018~December 2019 (13 months). The results of the return rate prediction study are as follows. First, the model achieved a prediction similarity level of almost 76%. After collecting time series data and preparing the final prediction model, it was confirmed that 76% of models could be achieved. All in all, the results demonstrate the reliability of the LSTM-based model for return rate prediction.
The study measured a subway construction worker's Macpa stress by Heart Rate Variability measuring instrument and conducted a survey of Korean job stress from subway construction workers. Also, the study analyzed the relationship between Macpa stress index and Korean job stress result and suggested managing stress method for each item. According to National Statistical Office data, the first line subway in Seoul was started to open in 1974. The extended total length is 996 kilometers until 2019. Many aged workers are currently working at subway construction sites due to the avoidance of young workers since the past until now. It means that the elderly has a substantial portion among subway construction workers. The productivity has been adversely affected by health problems due to the aging of workers, job stress due to heavy work, and personal health problems. So, the regulation and policies on job stress health management are being strengthened. The data were measured Macpa stress by machine measuring heart rate variability and conducted Korean job stress survey(shortened) from Sa-sang to Ha-dan line Busan subway construction workers for analyzing the relationship. Independent variable were age, job duration, job position, employment type, working type in this study. Macpa's dependent variable was stress index and Korean job stress survey(shortened)'s dependent variables were job requirements, job autonomy, relationship conflict, job instability, organizational structure, inappropriate compensation, working place culture, and total score. SPSS 12.0 K Statistics Program was used for statistical analysis. Kruskal-wallis test, a nonparametric statistical analysis, was used because the data are difficult to be assumed as normal distribution. As a result, the paper indicated the significant correlation between Macpa stress index and Korean job stress(short version). The elderly workers presented higher Macpa index and higher job stress due to aging and heavy-duty work. The majority workers were daily workers who had unstable working condition and uncertainty about the future. The study suggested a manual that could reduce job stress for subway construction workers and future study deriving management tool through analyzing job stress factor is necessary.
Journal of the Korea Society of Computer and Information
/
v.27
no.8
/
pp.241-251
/
2022
Diagnosis and management of customer's skin condition is an important essential function in the cosmetics and beauty industry. As the social media environment spreads and generalizes to all fields of society, the interaction of questions and answers to various and delicate concerns and requirements regarding the diagnosis and management of skin conditions is being actively dealt with in the social media community. However, since social media information is very diverse and atypical big data, an intelligent skin condition diagnosis system that combines appropriate skin condition information analysis and artificial intelligence technology is necessary. In this paper, we developed the skin condition diagnosis system SCDIS to intelligently diagnose and manage the skin condition of customers by processing the text analysis information of social media into learning data. In SCDIS, an artificial neural network model, AnnTFIDF, that automatically diagnoses skin condition types using artificial neural network technology, a deep learning machine learning method, was built up and used. The performance of the artificial neural network model AnnTFIDF was analyzed using test sample data, and the accuracy of the skin condition type diagnosis prediction value showed a high performance of about 95%. Through the experimental and performance analysis results of this paper, SCDIS can be evaluated as an intelligent tool that can be used efficiently in the skin condition analysis and diagnosis management process in the cosmetic and beauty industry. And this study can be used as a basic research to solve the new technology trend, customized cosmetics manufacturing and consumer-oriented beauty industry technology demand.
This study seeks to develop a stretch sensor for measuring the wrist movements of people using fishing lures. In order to confirm wrist movement, a stretch sensor was attached to the wrist band, and measurements of the dorsiflexion, plantar flexion, and fishing landing motion were measured using a scale to gauge factor, tensile strength, and elongation recovery rate. A conductive sensor using CNT dispersion was developed and applied to the E-band under the same conditions. A total of 15 sensors of the same size and five types of impregnation once, twice, and three times each were used to measure the gauge factor using UTM. The sensor that was impregnated twice had the best gauge rate, and the prototypes were manufactured with three sensors with high gauge rates and tensile strength. The results of the operation test conducted by connecting to the Arduino showed that Sample 1, which had the highest tensile strength and gauge factor, had a stable graph wavelength in three operations. Samples 2 and 3 showed stable wavelengths in the dorsiflexion and the plantar flexion; however, signal noise appeared in the fishing landing motion. This showed stable wavelengths in the two motions, but the wavelengths of the graphs differ depending on the tensile strength and gauge factor in the fishing landing motion. As a result, it was possible to identify the conditions necessary for manufacturing a stretch sensor for measuring wrist movement. This study will contribute to the development of smart wearable products for lure fishing.
International conference on construction engineering and project management
/
2009.05a
/
pp.869-875
/
2009
Safety is a big issue in the construction sites. For safe and secure management, tracking locations of construction resources such as labors, materials, machineries, vehicles and so on is important. The materials, machineries and vehicles could be controlled by computer, whereas the movement of labors does not have fixed pattern. So, the location and movement of labors need to be monitored continuously for safety. In general, Global Positioning System(GPS) is an opt solution to obtain the location information in outside environments. But it cannot be used for indoor locations as it requires a clear Line-Of-Sight(LOS) to satellites Therefore, indoor location monitoring system could be a convenient alternative for environments such as tunnel and indoor building construction sites. This paper presents a case study to investigate feasibility of Wi-Fi based indoor location monitoring system in construction site. The system is developed by using fingerprint map of gathering Received Signal Strength Indication(RSSI) from each Access Point(AP). The signal information is gathered by Radio Frequency Identification (RFID) tags, which are attached on a helmet of labors to track their locations, and is sent to server computer. Experiments were conducted in a shield tunnel construction site at Guangzhou, China. This study consists of three phases as follows: First, we have a tracking test in entrance area of tunnel construction site. This experiment was performed to find the effective geometry of APs installation. The geometry of APs installation was changed for finding effective locations, and the experiment was performed using one and more tags. Second, APs were separated into two groups, and they were connected with LAN cable in tunnel construction site. The purpose of this experiment was to check the validity of group separating strategy. One group was installed around the entrance and the other one was installed inside the tunnel. Finally, we installed the system inner area of tunnel, boring machine area, and checked the performance with varying conditions (the presence of obstacles such as train, worker, and so on). Accuracy of this study was calculated from the data, which was collected at some known points. Experimental results showed that WiFi-based indoor location system has a level of accuracy of a few meters in tunnel construction site. From the results, it is inferred that the location tracking system can track the approximate location of labors in the construction site. It is able to alert the labors when they are closer to dangerous zones like poisonous region or cave-in..
Jeong Min Lee;Ki Ho Park;Hee Dong Shin;Woo Jin Jeong;Jong Choo Lim
Applied Chemistry for Engineering
/
v.34
no.3
/
pp.264-271
/
2023
In this study, ASCOⓇ SLES-430 surfactant was synthesized by adducting 3 moles of ethylene oxide and 1 mole of propylene oxide to lauryl alcohol followed by a sulfation process, and the structure of the synthesized ASCOⓇ SLES-430 was elucidated by performing FT-IR, 1H-NMR and 13C-NMR analyses. Interfacial properties such as critical micelle concentration, static surface tension, emulsification index, and contact angle were measured, and environmental compatibility indices such as oral toxicity and skin irritation were also estimated for ASCOⓇ SLES-430. Both results were compared with ASCOⓇ SLES-226 and ASCOⓇ SLES-328 SLES surfactants possessing 2 moles and 3 moles of ethylene oxide, respectively. In particular, both foaming ability and foam stability were evaluated for ASCOⓇ SLES-430 and compared with ASCOⓇ SLES-226 and ASCOⓇ SLES-328, which have been widely used in detergent products, in order to test the potential applicability of ASCOⓇ SLES-430 in detergent product formulation for a small capacity built-in washing machine.
To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.
Journal of the Korea institute for structural maintenance and inspection
/
v.27
no.3
/
pp.71-79
/
2023
It is not efficient to install a maintenance system that measures seismic acceleration and displacement on all bridges and buildings to evaluate the safety of structures after an earthquake occurs. In order to maintain this, an on-site investigation is conducted. Therefore, it takes a lot of time when the scope of the investigation is wide. As a result, secondary damage may occur, so it is necessary to predict the safety of individual structures quickly. The method of estimating earthquake damage of a structure includes a finite element analysis method using approved seismic information and a structural analysis model. Therefore, it is necessary to predict the seismic information generated at arbitrary location in order to quickly determine structure damage. In this study, methods to predict the ground response spectrum and acceleration time history at arbitrary location using linear estimation methods, and artificial neural network learning methods based on seismic observation data were proposed and their applicability was evaluated. In the case of the linear estimation method, the error was small when the locations of nearby observatories were gathered, but the error increased significantly when it was spread. In the case of the artificial neural network learning method, it could be estimated with a lower level of error under the same conditions.
Kim, D.E.;Lee, W.Y.;Kang, D.H.;Kang, I.C.;Hong, S.J.;Woo, Y.H.
Journal of Practical Agriculture & Fisheries Research
/
v.18
no.1
/
pp.101-112
/
2016
Monitoring and control of the greenhouse environment play a decisive role in greenhouse crop production processes. The network system for greenhouse control was developed by using recent technologies of networking and wireless communications. In this paper, a remote monitoring and control system for greenhouse using a smartphone and a computer with internet has been developed. The system provides real-time remote greenhouse integrated management service which collects greenhouse environment information and controls greenhouse facilities based on sensors and equipments network. Graphical user interface for an integrated management system was designed with bases on the HMI and the experimental results showed that a sensor data and device status were collected by integrated management in real-time. Because the sensor data and device status can be displayed on a web page, transmitted using the server program to remote computer and mobile smartphone at the same time. The monitored-data can be downloaded, analyzed and saved from server program in real-time via mobile phone or internet at a remote place. Performance test results of the greenhouse control system has confirmed that all work successfully in accordance with the operating conditions. And data collections and display conditions, event actions, crops and equipments monitoring showed reliable results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.