• Title/Summary/Keyword: Test Load Simulation

Search Result 649, Processing Time 0.035 seconds

Experimental and numerical investigation of the effect of sample shapes on point load index

  • Haeri, Hadi;Sarfarazi, Vahab;Shemirani, Alireza Bagher;Hosseini, Seyed Shahin
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.1045-1055
    • /
    • 2017
  • Tensile strength is considered key properties for characterizing rock material in engineering project. It is determined by direct and indirect methods. Point load test is a useful testing method to estimate the tensile strengths of rocks. In this paper, the effects of rock shape on the point load index of gypsum are investigated by PFC2D simulation. For PFC simulating, initially calibration of PFC was performed with respect to the Brazilian experimental data to ensure the conformity of the simulated numerical models response. In second step, nineteen models with different shape were prepared and tested under point load test. According to the obtained results, as the size of the models increases, the point load strength index increases. It is also found that the shape of particles has no major effect on its tensile strength. Our findings show that the dominant failure pattern for numerical models is breaking the model into two pieces. Also a criterion was rendered numerically for determination of tensile strength of gypsum. The proposed criteria were cross checked with the results of experimental point load test.

The Probabilistic Production Simulation with Energy Limited Units Using the Mixture of Cumulants Approximation (에너지 제약을 갖는 발전기를 고려한 경우의 Mixture of Cumulants Approximation법에 의한 발전시뮬레이션에 관한 연구)

  • 송길영;김용하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1195-1202
    • /
    • 1991
  • This paper describes a newly developed method of production simulation by using the Mixture of Cumulant Approximation (MOCA). In this method, the load is modelled as random variable (r.v.) which can be interpreted in terms of partitioning the load into various categories. We can consider the load shape of multi-modal characteristics. The number of load category and demarcation points of each load category are calculated automatically by using interpolation and least square method. Each generating unit of a supply system is modelled as r.v. of unit outage capacity according to the number of unit outage subset. Since the computation burden of each subset's moments increases exponentially as units are convolved to the system, we further derive the specific recursive formulae. In simulating the energy limited units, hydro unit simulation is performed using Energy Invariance Property and the simulation of pumped storage unit is modelled as compulsory and economic operations. The proposed MOCA method is applide to the test systems and the results are compared with those of cumulant and Booth Baleriaux method. It is verified that the MOCA method is considerably reliable and stable both pathological and well behaved system.

Virtual Durability Test Procedures and Applications on Design of a Vehicle Suspension Module (자동차 현가모듈의 내구설계를 위한 가상 내구시험기법 정립 및 응용)

  • 손성효;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.144-150
    • /
    • 2003
  • Recently, the virtual test techniques using computer simulation play an important part in the vehicle development procedures in order to reduce the development time and cost by replacing the physical prototypes of the vehicle components or systems with the virtual prototypes. In this paper, virtual durability test procedures for the vehicle suspension module have been developed. Virtual durability test consists of dynamic simulation computing load history of suspension components, fatigue analysis computing the life of components. A vehicle suspension module for dynamic simulation are developed and validated by comparison with the measured data obtained from the field vehicle test. And on the basis of the validated vehicle suspension model, fatigue analysis has been performed for the virtual durability design of the suspension components.

A Full Scale Fossil Power Plant Simulator For Hadong (하동 화력 발전소 전범위 시뮬레이터 개발)

  • 김성호;김종현;조창호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.204-204
    • /
    • 2000
  • This paper describes the development of training simulator for Hadong fossil Power Plant. The simulator was developed to train operator, test new control Logic and evaluate alternative operating procedure for expert engineer of control system. The most control logics such as Siemens TELEPERM ME and GE Mark V are translated directly from microprocessors. Those HMI are also directly emulated. The simulation was performed by ProTRAX modeling software. The paper discusses the configuration of simulator and the simulation results of 30%, 50%, 75% and 100% normal rate load test.

  • PDF

A Systems Engineering Approach to Multi-Physics Load Follow Simulation of the Korean APR1400 Nuclear Power Plant

  • Mahmoud, Abd El Rahman;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.1-15
    • /
    • 2020
  • Nuclear power plants in South Korea are operated to cover the baseload demand. Hence they are operated at 100% rated power and do not deploy power tracking control except for startup, shutdown, or during transients. However, as the contribution of renewable energy in the energy mix increases, load follow operation may be needed to cover the imbalance between consumption and production due to the intermittent nature of electricity produced from the conversion of wind or solar energy. Load follow operation may be quite challenging since the operators need to control the axial power distribution and core reactivity while simultaneously conducting the power maneuvering. In this paper, a systems engineering approach for multi-physics load follow simulation of APR1400 is performed. RELAP5/SCDAPSIM/MOD3.4/3DKIN multi-physics package is selected to simulate the Korean Advanced Power Reactor, APR1400, under load follow operation to reflect the impact of feedback signals on the system safety parameters. Furthermore, the systems engineering approach is adopted to identify the requirements, functions, and physical architecture to provide a set of verification and validation activities that guide this project development by linking each requirement to a validation or verification test with predefined success criteria.

Modeling and Parameter Identification of the Slung Load System of an Unmanned Rotorcraft using a Flexible Cable

  • Lee, Byung-Yoon;Moon, Gun-Hee;Lee, Dong-Yeon;Tahk, Min-Jea;Oh, Hyun-Shik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.365-377
    • /
    • 2017
  • In this paper, we propose a method to identify the parameters of a rotorcraft slung load system using the modal characteristics of a flexible cable. The proposed method estimates the length of the cable and the mass of the payload by means of a frequency analysis. Dynamic equations of the slung load system with the flexible cable are derived using Udwadia-Kalaba equation (UKE) in order to build a simulation program, and the similarity of the simulated slung load movement is verified by comparison with flight test results. Using the computer simulation program, we show that the proposed method works well within various parameter ranges.

Half Load-Cycle Worked Dual Input Single Output DC/AC Inverter

  • Chen, Rong;Zhang, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1217-1223
    • /
    • 2014
  • A novel half load-cycle worked dual input single output (DISO) DC/AC inverter is presented. The basic circuit consists of a dual buck regulator, which works in continuous current mode. The working principle of DISO DC/AC inverter has been used. The control method applied for half load-cycle worked DISO DC/AC inverter has been studied. The control effects of the open-loop proportional control and closed-loop proportional-integral control are compared by using PSIM software. The parameters are adopted in the realistic simulation and experiment test. Moreover, the waveforms, such as voltage of modulation reference signal and output voltage, were given. The simulation and experiment results proved that the half load-cycle worked DISO DC/AC inverter could achieve good performance, gain a line frequency of 50 Hz, and verify the correctness of theoretical analysis.

A Study on the Cost Effective DSM Method for Lighting Power Control through Pilot Test Based on Pre-Verified Methodologies (다양한 형태의 조명(형광등) 전력제어 실증시험을 통한 비용효과적인 전력수요관리방법 도출)

  • Yang, Seung-Kwon;Kim, Dae-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.7-13
    • /
    • 2013
  • The portion of lighting power consumption for our country is up to 20~30% of the total amount. Currently, most of the DSM(Demand side management) of lighting power is delivered in supply of high efficient lighting to customers. On the contrary, applications of lighting power to power load leveling are still rare. In this paper, the simulations for various control types of lighting power for load leveling are tried, and we obtained the cost effective and optimal control method through that. This simulation was executed in test office with fluorescent light by us based on applying 8 control types(on, off & dimming), considering customers' satisfaction, for instance, minimum intensity of illumination allowed. According to the result of this test, we found that mixed type(chessboard(on-off) plus dimming control(10%)) is most effective.

A Study on Structural Integrity and Dynamic Characteristic of Inertial Load Test Equipment for Performance Test of Railway Vehicle Propulsion Control System (철도차량 추진제어장치 성능시험을 위한 관성부하 시험설비의 구조안전성 및 동특성 평가 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Lee, Sang-Hoon;Lee, Dae-Bong
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.363-370
    • /
    • 2010
  • This paper describes the evaluation of structural integrity and dynamic characteristic of inertial load test equipments for performance test of railway vehicle propulsion control system. The propulsion control system of railway vehicle has to be confirmed of safety and reliability prior to its application. Therefore, inertial load test equipments were designed through theoretical equation for performance test of propulsion control system. The structural analysis of inertial load test equipments was conducted using Ansys v11.0 and the dynamic characteristic was evaluated using Adams. The results showed that the structural integrity of inertial load test equipment was satisfied with a safety factor of 10.2 on the bearing part under combined load. Also, the structural stability of flywheel according to dynamic simulation was secured by the maximum oscillation displacement within 0.83mm.

A Study on Load Simulator for Traction system combined testing (전동차 조합시험을 위한 부하 시뮬레이터에 관한 연구)

  • Kim, Gil-Dong;Lee, Han-Min;Oh, Seh-Chan;Pak, Sung-Hyuk;Kim, Jong-Dae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1643-1645
    • /
    • 2005
  • A newly-built inverter has to undergo a series of stress tests in the final stage of production line. This can be achieved by connecting it to a dynamometer consisting of a three-phase machine joined by a rigid shaft to a DC load machine. The latter is controlled to create some specific load characteristic needed for the test. In this paper a test method is proposed, in which no mechanical equipment is needed. The suggested test stand consists only of a inverter to be tested and a simulator converter. Both devices are connected back- to-back on the AC-side via smoothing reactors. The simulator operates in real-time as an equivalent load circuit, so that the device under test will only notice the behaviour of a three-phase machine under consideration of the load. In odor to wove rightness of the suggested test method, the simulation and actural experiment rallied out emulation for a 2.2kW induction motor.

  • PDF