• Title/Summary/Keyword: Test Blanket Module

Search Result 15, Processing Time 0.025 seconds

First Wall Design of ITER Test Blanket Module(TBM) based on RCC-MR Code (RCC-MR 코드에 기반한 ITER 시험증식블랑켓 일차벽 설계)

  • Shin, Kyu In;Lee, Dong Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.14-19
    • /
    • 2012
  • The Helium cooled ceramic reflector(HCCR) test blanket module(TBM) has been designed and developed to participate the ITER(International Thermonuclear Experimental Reactor) test blanket program in Korea. The TBM was one of the main objectives for developing ITER for proving the tritium self-sufficiency and the heat transfers to produce the electricity with the breeding blanket concept. Among the TBM components, the first wall(FW) was the most important component in safety since it was directly faced a high level of a heat and fast neutrons from the plasma side and could protect the others components inside TBM. In this paper, the FW has been designed through the thermo-mechanical analysis considering ITER operation conditions. With the developed simple models, the stress limit analysis based on RCC-MR code which is the nuclear power plant design codes in France was evaluated for the allowable design criteria. The results showed that the designed FW model satisfied $1.5S_m$ or $3S_m$ of the allowable stress($S_m$) in RCC-MR code at the maximum stress region in the FW.

Three-dimensional thermal-hydraulics/neutronics coupling analysis on the full-scale module of helium-cooled tritium-breeding blanket

  • Qiang Lian;Simiao Tang;Longxiang Zhu;Luteng Zhang;Wan Sun;Shanshan Bu;Liangming Pan;Wenxi Tian;Suizheng Qiu;G.H. Su;Xinghua Wu;Xiaoyu Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4274-4281
    • /
    • 2023
  • Blanket is of vital importance for engineering application of the fusion reactor. Nuclear heat deposition in materials is the main heat source in blanket structure. In this paper, the three-dimensional method for thermal-hydraulics/neutronics coupling analysis is developed and applied for the full-scale module of the helium-cooled ceramic breeder tritium breeding blanket (HCCB TBB) designed for China Fusion Engineering Test Reactor (CFETR). The explicit coupling scheme is used to support data transfer for coupling analysis based on cell-to-cell mapping method. The coupling algorithm is realized by the user-defined function compiled in Fluent. The three-dimensional model is established, and then the coupling analysis is performed using the paralleled Coupling Analysis of Thermal-hydraulics and Neutronics Interface Code (CATNIC). The results reveal the relatively small influence of the coupling analysis compared to the traditional method using the radial fitting function of internal heat source. However, the coupling analysis method is quite important considering the nonuniform distribution of the neutron wall loading (NWL) along the poloidal direction. Finally, the structure optimization of the blanket is carried out using the coupling method to satisfy the thermal requirement of all materials. The nonlinear effect between thermal-hydraulics and neutronics is found during the blanket structure optimization, and the tritium production performance is slightly reduced after optimization. Such an adverse effect should be thoroughly evaluated in the future work.

OVERVIEW OF FUSION BLANKET R&D IN THE US OVER THE LAST DECADE

  • ABDOU M. A.;MORLEY N. B.;YING A. Y.;SMOLENTSEV S.;CALDERONI P.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.401-422
    • /
    • 2005
  • We review here research and development progress achieved in US Plasma Chamber technology roughly over the last decade. In particular, we focus on two major programs carried out in the US: the APEX project (1998-2003) and the US ITER TBM activities (2003-present). The APEX project grew out of the US fusion program emphasis in the late 1990s on more fundamental science and innovation. APEX was commissioned to investigate novel technology concepts for achieving high power density and high temperature reactor coolants. In particular, the idea of liquid walls and the related research is described here, with some detailed examples of liquid metal and molten salt magnetohydrodynamic and free surface effects on flow control and heat transfer. The ongoing US ITER Test Blanket Module (TBM) program is also described, where the current first wall/blanket concepts being considered are the dual coolant lead lithium concept and the solid breeder helium cooled concepts, both using ferritic steel structures. The research described for these concepts includes both thermofluid MHD issues for the liquid metal coolant in the DCLL, and thermomechanical issues for ceramic breeder packed pebble beds in the solid breeder concept. Finally, future directions for ongoing research in these areas are described.

삼중수소 증식 재료 개발을 위한 Li4SiO4 분말합성

  • Yu, In-Geun;Lee, Sang-Jin;Jo, Seung-Yeon;An, Mu-Yeong;Gu, Deok-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.324-324
    • /
    • 2010
  • 핵융합의 고체형 증식(Helium Cooled Solid Breeder : HCSB) 블랑켓(Blanket Module)은 삼중수소 증식을 위해서 Li4SiO4, Li2TiO3, Li2O 및 Li2ZrO3 등의 페블이 고려되고 있다. 이러한 페블을 제조하기 위해서는 먼저 각각의 분말 제조가 선행되어야 한다. 한국의 Test Blanket Module(TBM)은 Li4SiO4 페블을 개발을 개발하여 사용할 예정이고 옵션으로 Li2TiO3 페블을 개발하는 것으로 되어 있다. Li4SiO4 페블을 개발하기 위해서 먼저 분말합성이 필수적이다. Li4SiO4 분말을 합성에 하기 위해서는 Lithium 금속염과 실리카 졸을 용매 및 폴리머 캐리어로서의 두 가지 기능을 하는 에틸렌글리콜에 첨가한 후 가열하여 완전히 용해시킨 후 혼합 용액을 건조시켜 겔형의 전구체를 제조한다. 이를 하소한 후 결정화시켜 Silicate 분말을 얻는데 이때의 건조, 하소 및 결정화 온도의 조건에 따른 분말의 크기 및 특성이 각각 다르다. 즉, 바인더 물질의 비율과 합성온도에 따라 특성이 약간씩 다른 분말을 얻을 수 있었다. 이렇게 얻어진 Silicate 분말은 지르코니아 볼을 이용하여 약 24 시간 동안 볼 밀링 과정을 통해 입도가 작은 미세한 Silicate 분말로 만들었다. 합성된 분말은 여러 가지 시험 및 분석을 통해서 검증되었으며, 불순물 등은 관찰되지 않았다.

  • PDF

CVD 및 CVR에 의한 SiC 코팅기술 개발

  • Yu, In-Geun;Yun, Yeong-Hun;Park, Lee-Hyeon;An, Mu-Yeong;Gu, Deok-Yeong;Jo, Seung-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.203-203
    • /
    • 2012
  • 국제핵융합실험로(ITER)는 2020년경에 제작 설치가 완료될 예정이다. 이 장치에 한국도 시험블랑켓 모듈(Test Blanket Module: TBM)을 장착할 예정이다. 한국은 ITER 참여국 중 유일하게 지름 1 mm의 흑연 페블에 SiC를 코팅한 중성자 반사 재료를 채택한 것이 특징이다. 중성자 반사재료를 이용하게 되면 독성이 강한 중성자 증배재인 Be의 양을 줄일 수 있다. SiC 코팅은 여러 가지 방법이 알려져 있지만, 지름 1 mm 내외의 흑연 페블에 SiC를 골고루 코팅하기 위해서는 여러 가지 기술이 가미되어야 한다. 본 연구에서는 CVD 및 CVR법을 이용해 SiC를 코팅했으며, CVD의 경우 전구체 물질로 $CH_3SiCl_3$가 사용되었으며, 캐리어 가스로는 $H_2$를 사용했다. 그리고 CVR에서는 평균입도 10 ${\mu}m$$SiO_2$를 사용했으며, $1,750^{\circ}C$에서 2시간 노출시켰다. 이렇게 얻어진 SiC 코팅은 XRD, EDS, FE-SEM 등을 활용한 여러 가지 분석으로 확인할 수 있었다.

  • PDF

CVD에 의한 흑연페블의 SiC 코팅기술 개발

  • Yu, In-Geun;Park, Lee-Hyeon;An, Mu-Yeong;Gu, Deok-Yeong;Jo, Seung-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.231-231
    • /
    • 2012
  • 7개 나라가 참여해서 공동으로 제작하고 있는 국제핵융합실험로(ITER)는 2020년경에 제작 설치가 완료될 예정이다. ITER 장치에는 6개의 시험 블랑켓 모듈(Test Blanket Module : TBM)이 장착될 예정이며, 그 중에서 한국도 1개를 독자적으로 제작해서 설치할 예정이다. 한국형 헬륨 냉각 고체형 증식(Helium Cooled Solid Breeder : HCSB) TBM이며, 한국은 ITER 참여국 중 유일하게 중성자 반사 재료를 채택한 것이 특징이다. 중성자 반사재료로는 지름 1 mm 내외의 흑연 페블에 SiC를 코팅해서 사용할 예정이다. SiC는 고온저방사화 물질로 차세대 핵융합로의 구조 재료로도 개발되고 있는 물질로, 이렇게 하면 흑연의 단점인 기계적 특성 향상뿐만 아니라, 산화나 화재 등에 대한 사고의 부담도 크게 줄일 수 있는 장점이 있다. 흑연위에 SiC를 코팅하는 방법은 여러 가지가 있으며, 그 중에서 비교적 간단한 건식 방법은 RF Sputtering, PECVD 등이 있다. 건식은 코팅방법이 간단하고 비교적 쉬운 편이지만 페블표면에 양질의 SiC 박막을 얻기가 쉽지 않은 단점이 있다. 이들 방법보다 습식법은 코팅이 까다롭지만 양질의 코팅막을 비교적 쉽게 얻을 수 있는 장점이 있다. CVD의 경우 전구체 물질로 여러 가지 물질이 사용될 수 있으며 대표적으로 $SiH_4$, $Si(CH_3)_4$, $CH_3SiCl_3$ 등이 있으며, 캐리어 가스로는 $H_2$가 사용된다. 이렇게 얻어진 SiC 코팅페블은 흑연에 비해 파괴강도도 향상되고 마모 등에 강한 것을 확인할 수 있었다.

  • PDF

ASUSD nuclear data sensitivity and uncertainty program package: Validation on fusion and fission benchmark experiments

  • Kos, Bor;Cufar, Aljaz;Kodeli, Ivan A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2151-2161
    • /
    • 2021
  • Nuclear data (ND) sensitivity and uncertainty (S/U) quantification in shielding applications is performed using deterministic and probabilistic approaches. In this paper the validation of the newly developed deterministic program package ASUSD (ADVANTG + SUSD3D) is presented. ASUSD was developed with the aim of automating the process of ND S/U while retaining the computational efficiency of the deterministic approach to ND S/U analysis. The paper includes a detailed description of each of the programs contained within ASUSD, the computational workflow and validation results. ASUSD was validated on two shielding benchmark experiments from the Shielding Integral Benchmark Archive and Database (SINBAD) - the fission relevant ASPIS Iron 88 experiment and the fusion relevant Frascati Neutron Generator (FNG) Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM) mock-up experiment. The validation process was performed in two stages. Firstly, the Denovo discrete ordinates transport solver was validated as a standalone solver. Secondly, the ASUSD program package as a whole was validated as a ND S/U analysis tool. Both stages of the validation process yielded excellent results, with a maximum difference of 17% in final uncertainties due to ND between ASUSD and the stochastic ND S/U approach. Based on these results, ASUSD has proven to be a user friendly and computationally efficient tool for deterministic ND S/U analysis of shielding geometries.

국제핵융합실험로(ITER) 시험을 위한 한국형 시험증식블랑켓 개념설계 및 성능해석

  • Lee, Dong-Won;Jin, Hyeong-Gon;Lee, Eo-Hwak;Yun, Jae-Seong;Kim, Seok-Gwon;Park, Seong-Dae;Jo, A-Ra;An, Mu-Yeong;Jo, Seung-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.255-255
    • /
    • 2015
  • 국제핵융합실험로(ITER)의 3대 목표 중 하나는 핵융합로 개발을 위한 삼중수소증식블랑켓 개념을 시험하고 검증하는 것이며, 이를 위해 시험증식블랑켓(TBM, Test Blanket Module) 프로그램을 마련, 각국이 참여할 수 있도록 하고 있다. 한국도 2012년 국가핵융합위원회 결정에 따라, EU, 일본, 중국, 인도와 함께 TBM 프로그램에 참여하고 있으며, 2021년 설치를 목표로 헬륨냉각 고체증식재 개념의 HCCR (Helilum Cooled Ceramic Reflector) TBM을 설계, 개발하고 있다. 한국형 TBM은 총 4개의 서브모듈과 하나의 후벽(Back Manifold, BM) 으로 구성되며, 각 서브모듈은 플라즈마와 대면하는 일차벽(First Wall, FW), 증식재와 증배재, 반사재를 담고 있는 증식영역(Breeding Zong, BZ), 냉각재 매니폴드 및 구조물 역할을 하는 측벽(Side Wall, SW) 등의 기능부품으로 구성되어 있다. 냉각재는 8 MPa, $300-500^{\circ}C$의 고온고압헬륨을 사용하고, Li2SiO4 혹은 Li2TiO4 형태의 Li 세라믹 증식재를 사용하며, 중성자 증배를 위해 Be 증배재 및 흑연 반사재를 사용한다 [1-3]. 2015년 2월 개념설계검토(CDR, Conceptual Design Review)를 위해, TBM-shield를 포함한 TBM-set 설계가 완료되었으며, 열수력, 구조, 지진, 전자기, 복합하중에 대한 평가가 진행되었다. 본 논문에서는 이 중 H/He-phase에 시험될 EM-TBM과 D-T phase에 시험될 INT-TBM에 대한 열수력 성능 결과를 소개하였다[5]. 각각의 열부하 조건은 0.17과 $0.3MW/m^2$이며, 중성자 조사는 D-T phase 에서만 고려되었다. 구조재 및 사용된 기능소재별 온도 요건을 정의하고, 성능해석 결과와 비교하였으며, 이를 통해 모든 온도 요건을 만족함을 최종 확인하였다. 이러한 온도 분포는 열응력 평가를 위해 구조해석 입력자료로 활용되었다.

  • PDF