• Title/Summary/Keyword: Tertiary denitrification

Search Result 7, Processing Time 0.018 seconds

Performance Evaluation of Tertiary Post-denitrification Processes for the Reuse of Secondary Effluent from Wastewater Treatment Plant (하수2차처리수의 재이용을 위한 후탈질공정의 평가)

  • Lee, Chanho;Yun, Zuwhan;Yi, Yun Seok;Lee, Han Saem;Ahn, Dong Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.642-649
    • /
    • 2007
  • The effectiveness of add-on tertiary treatment processes for the polishing of the effluent of a biological nutrient removal (BNR) system from a modified $A^2/O$ process has been examined under the field condition with pilot-scale plants. The add-on treatment processes of 1) combined biofilm anoxic reactor and sand filtration, and 2) two-stage denitrification filter had been operated with various operating conditions. The experimental results indicated that two-stage denitrification filter could produced a better polished tertiary effluent. Filtration rate of $150m^3/m^2{\cdot}d$ for the 2-stage denitrifying filter could decrease the nitrate removal probably due to shorter detention time that caused insufficient reaction for denitrification. Two stage denitrification filter operated with M/N ratio of 3.0 and filtration rate of $100m^3/m^2{\cdot}d$ produced the tertiary effluent with nitrate and SS concentraitons of 2.8 mg/L and 2.3 mg/L, respectively. When the operating temperature reduced $30^{\circ}C$ to $18^{\circ}C$, $NO_3{^-}-N$ removal efficiency decreased from 73% to 68%.

Development of Biological Filtration Process for Effective Nitrogen Removal in Tertiary Treatment of Sewage (생물막 여과반응기를 이용한 고도질소 제거법의 개발)

  • Jeong, Jin-Woo;Kim, Sung-Won;Tsuno, Hiroshi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.222-229
    • /
    • 2006
  • The treatment performance and operational parameters of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. In Filter 2, denitrification was accomplished under LV of 50~168 m/d in a 1 m filter-bed. However, the denitrification capacity reached the maximum when the linear velocity was increased to 202 m/d. Relationship between increase in microorganism and headloss was clearer in Filter 2. As a result, the denitrification rate increased from 1.0~2.3 kgN/($m^3-filter-bed{\cdot}d$) as the headloss increased. The COD removal rate was 6.0~9.6 kgCOD/($m^3-filter-bed{\cdot}d$) when operated with Filters 1 and 2. These results mean that captured bacteria contributed a part of COD consumption and denitrification. The maximum nitrification and denitrification rate was 0.5 and 4 kgN/($m^3-filter-bed{\cdot}d$) in Filter 1 and 2.The ratio of backwashing water to the treated water was about 5~10 %. In Filter 1, wasted sludge in backwashing was only 0.7~5.3 gSS/($m^3$-treated water). In Filter 2, added methanol was converted into sludge and its value was 8.0~24 gSS/($m^3$-treated water). These results proved that this process is both convenient to install as tertiary treatment and cost effective to build and operate.

Tertiary denitrification of the secondary effluent in biofilters packed with composite carriers under different carbon to nitrogen ratios

  • Shi, Yunhong;Wei, Nan;Wu, Guangxue
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.311-317
    • /
    • 2016
  • A new type of biofilter packed with composite carriers was designed for tertiary denitrification of the secondary effluent with removal of both oxidized nitrogen and suspended solids (SS). At the empty bed residence time of 15 min and organic carbon to nitrate nitrogen ($C/NO_3-N$) ratios of 2, 1.5 and 1 g/g, the removal percentage of $NO_3-N$ was 67%, 58% and 36% in the ethanol biofilter, and was 61%, 43% and 26% in the acetate biofilter, respectively. The biofilters packed with composite carriers removed SS effectively, with the effluent turbidity in both biofilters of less than 3 NTU. During the operating cycle between the biofilter backwashings, the $NO_3-N$ removal percentage decreased initially after backwashing, and then gradually increased. Under $C/NO_3-N$ ratios of 2, 1.5 and 1 g/g, the $NO_3-N$ reduction rate was 1.75, 1.04 and $0.68g/m^2/d$ in the ethanol biofilter, and was 1.56, 1.07 and $0.76g/m^2/d$ in the acetate biofilter, respectively. In addition, during denitrification, the ratio of the consumed chemical oxygen demand to the removed $NO_3-N$ was 5.06-8.23 g/g in the ethanol biofilter, and was 4.26-8.6 g/g in the acetate biofilter.

Tertiary Treatment of Municipal Wastewater and Bypassed Rainfall Treatment using by BAF (BAF를 이용한 하수의 3차 처리 및 by-pass된 우수의 처리)

  • Lee, Kwang Je;Park, Jae-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.327-331
    • /
    • 2005
  • The study was conducted with two laboratory biological aerated filter (BAF) reactors: denitrification filter (DF) and nitrification BAF. The influent flow (Q) was fixed to 48 L/d and total empty bed contact time (EBCT) was 1 hr. The flow direction was upflow with NRCY of 1 to 2Q. The secondary effluent was fed to the reactors and the influent concentrations were adjusted with some stock solutions to simulate by-pass concentration during rainfall. The study results indicate that COD and SS removal efficiencies were excellent and not influenced by temperature. Nitrification efficiency was over 90% at the influent loading less than $1.12kg/media\;m^3/d$, but the efficiencies were decreased in low temperature. TN removal efficiencies were 10% to 60%.

Modeling Fate and Transport of Organic and Nitrogen Species in Soil Aquifer Treatment-(I) Model Development and Verification (토양/대수층 처리(soil aquifer treatment)에서 유기물과 질소화합물 제거와 이송 모델링-(I) 모델 개발 및 검증)

  • Kim Jung-Woo;Kim Jeong-Kon;Cha Woo-Suk;Choi Hee-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.9-15
    • /
    • 2005
  • Soil aquifer treatment is a water reuse technology that secondary or tertiary treated wastewater is infiltrated into the aquifer in which physical and biochemical reactions occur. Major consideration in SAT is the removal and transport of DOC and nitrogen species. In this study, reaction mechanism in SAT was examined considering nitrification, denitrification and organic oxidation. In addition, SAT modeling system was developed as the reaction mechanism was applied to groundwater flow and transport model. In verification of the reaction module by 1-dimensional unsaturated soil column test, the experimental data of all of the species, ammonium, nitrate, DOC and DO, were well matched with the simulation results. In sensitivity analysis, ammonium partition coefficient, dissolved oxygen inhibition constant and biomass decay rate affect ammonium, DOC and DO concentration of effluent, respectively.

Nitrate Removal of a Cattail Wetland Cell Purifying Effluent from a Secondary-Level Treatment Plant During Its Initial Operating Stage (2차처리장 방류수 정화 부들습지셀의 초기운영단계 질산성질소 제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.228-233
    • /
    • 2004
  • Nitrate removal was examined from May to October 2003 of a surface flow treatment wetland cell, which was a part of a treatment wetland system composed of four wetland cells and a distribution pond The system was established on rice paddy near the Kohung Estuarine Lake located in the southern part of the Korean Peninsula. Effluent from a secondary-level night soil treatment plant was funneled into the system. The investigated cell, 87 m in length and 14 m in width, was created in April 2003. An open water was designed at its center, which was equivalent to 10 percent of its total area. Cattails (Typha angustifolia) were transplanted from natural wetlands into the cell and their stems were cut at about 40cm height from their bottom ends. Average $25.0\;m^3/day$ of effluent from the treatment plant was funneled into the cell by gravity flow and average $24.1\;m^3/day$ of its treated effluent was discharged into the Sinyang Stream flowing into the lake. Its water depth was maintained about 0.2 m and its hydraulic detention time averaged 5.2 days. Average height of the cattail stems was 42.5 cm in May 2M3 and 117.7 cm in September 2003. The number of stems averaged $9.5\;stems/m^2$ in May 2003 and $16.4\;stems/m^2$ in September 2003. The growth of cattails was good. Temperature of influent and effluent averaged 25.9 and $26.7^{\circ}C$, respectively. $NO_3$-N loading rate of influent and effluent averaged 176.67 and $88.09\;mg/m^2\;day$, respectively. Removal of rf03-N averaged $89.58\;mg/m^2\;day$ and its removal rate by mass was about 50%. Considering its initial operating stage in which cattail rhizomes and litter layer on the bottom were not Idly established, the $NO_3$-N removal rate of the cell was rather good.

Development of New BNR Process Using Fixed-Biofilm to Retrofit the Existing Sewage Treatment Plant (고정생물막을 이용한 기존 하수처리장의 생물학적 영양염 제커 신공정개발)

  • Kim, Mi-Hwa;Lee, Ji-Hyung;Chun, Yang-Kun;Park, Tae-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1093-1101
    • /
    • 2000
  • The object of this study was to develop new BNR process using fixed-biofilm which could be applied to retrofit the existing wastewater treatment plant or to introduce as tertiary treatment plant. To achieve complete denitrification from typical raw sewage in Korea, external carbon source must be supplied because $SCOD_{cr}/T-N(NH_4{^+}-N+NOx-N)$of raw sewage was lower than other countries. In this study, the ratio of $SCOD_{cr}/NH_4{^+}-N$ was 2.49 and the influent $NH_4{^+}$-N concentration during the experimental period was varied from 25 to 37 mg/L. To enhance nitrogen removal from the sewage, the two processes using fixed biofilm were adopted as R-Hanoxic/mid.settler/aerobic/anoxic/ aerobic) and R-2(aerobic/mid.settlerlanoxic/anoxic/aerobic), respectively. In the comparison of $NH_4{^+}$-N, T-N effluent quality and T-N removal efficiency in both processes without external carbon source, R-1 process was better than R-2 process for nitrogen removal from raw sewage. With respect to $SCOD_{cr}$/NOx-N ratio and total nitrogen removal in each anoxic reactor of two processes, R-1's was more effective than R-2's for distributing organic matters of raw sewage. In the both processes using fixed biofilm, the amount of required alkalinity to remove unit $NH_4{^+}$-N were 5.18 and 5.76($g{\cdot}CaCO_3/g{\cdot}NH_4{^+}-N_{removed}$), respectively and were lower than activated sludge BNR process(7.14).

  • PDF