• Title/Summary/Keyword: Terrestrial equipment

Search Result 54, Processing Time 0.034 seconds

Monitoring of the Natural Terrain Behavior Using the Terrestrial LiDAR (지상라이다 자료를 이용한 자연사면의 변위 모니터링)

  • Park, Jae Kook;Lee, Sang Yun;Yang, In Tae;Kim, Dong Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2D
    • /
    • pp.191-198
    • /
    • 2010
  • The displacement of slope is a key factor in predicting the risk of a landslide. Therefore, the slope displacement should be continuously observed with high accuracy. Recently, high-tech equipment such as optical fiber sensor, GPS, total station and measuring instrument have been used. However, such equipment is poorly used in fields due to economics, environment, convenience and management. Because of this, development of substantial observational techniques for varied slope observation and field applications is needed. This study analyzed the possibility of terrestrial LiDAR for slope monitoring and suggested it as information-obtaining technique for slope investigation and management. For that, this study evaluated the monitoring accuracy of terrestrial LiDAR and performed GRID analysis to read the displacement area with the naked eye. In addition, it suggested a methodology for slope monitoring.

Slope terrain Analysis by using Terrestrial LiDAR Equipment (지상라이다 장비를 이용한 사면지형분석)

  • Ham, Ju-Hyoung;Choi, Seung-Pil;Kim, Mun-Sup;Kim, Uk-Nam
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.291-293
    • /
    • 2010
  • Terrestrial LiDAR can be used to accurately measure the 3D slope terrain because it can obtain the entire shape of the object, instead of only a specific location, while not much influenced by the environment, and it can create more dense and precise 3D coordinates than those of aerial LiDAR. Therefore, in this study, subject areas with different terrain conditions were selected, the terrestrial LiDAR device was used to observe the slope terrain, and a slope terrain analysis technique was proposed based on the observation results.

  • PDF

An Efficient STBC Scheme for a Cooperative Satellite-Terrestrial System (위성과 지상 중계 장치와의 협동 다이버시티를 위한 효율적인 STBC 방식)

  • Park, Un-Hee;Li, Jing;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.997-1005
    • /
    • 2008
  • In this paper, we propose an efficient space-time block coding (STBC) scheme in a cooperative satellite-terrestrial system. The proposed STBC scheme has code rate 1 for a 3 transmit antenna scheme. Because the channel matrix of the proposed scheme is orthogonal, we can use a simple linear decoding algorithm and also can expect improved performance over the conventional scheme. The simulation results demonstrate that the proposed scheme has improved performance for bit error rates (BER) than several conventional STBC schemes. In addition, we investigate performance simulation results by power imbalance between the terrestrial repeaters and satellite.

Research on the application of nanocomposite materials in children's physical exercise equipment

  • Huanxiang Ding;Xueqin Wang;Xiaodao Chen
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.273-284
    • /
    • 2023
  • Combating the worldwide environmental threat of plastic waste pollution has become a priority. Plastic pollution has the potential to impact land, rivers, and seas, since many marine and terrestrial organisms have perished as a result of plastic's non-biodegradability and soil dangers. For this consumption, it seems required to manufacture and use new renewable resources. Renewable materials for diverse applications have been created utilizing nanotechnology, which may replace conventional materials for children's activities and sports equipment. This study investigates and suggests that nanotechnology-based materials be replaced with conventional materials to save the environment in manufacturing equipment for children's physical activities. On the basis of the mechanical sciences, a stability study of the bending behavior of small-scale structures will be performed for the various recommended materials.

Monitoring analysis of Model Slope by using Terrestrial LiDAR data (지상LiDAR자료를 이용한 모형사면의 모니터링)

  • Kim, Sung-Hak;Choi, Seung-Pil;Yang, In-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.17-23
    • /
    • 2008
  • A model slope was made to work out a way of detecting the sign of the occurrence of landslides and monitoring analysis was conducted to grasp the slope displacement of Terrestrial LiDAR equipment. As a result, the image of slope displacement could be monitored quickly and the accuracy of monitoring analysis was a deviation of 0.007m, 0.006m and 0.006m on average based on the figures prior to displacement after the first, second and third displacements, respectively. As the figures represent a very small deviation, they will be able to be used helpfully in measuring the displacement of actual slope in the future.

  • PDF

5G Wireless Communication Technology for Non-Terrestrial Network (비지상네트워크를 위한 5G 무선통신 기술)

  • Kim, J.H.;Yoon, M.Y.;You, D.H.;Lee, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.51-60
    • /
    • 2019
  • As a way to further expand and enable the 5G ecosystem, the $3^{rd}$ Generation Partnership Project (3GPP) is considering the development of a 5G new radio (NR)-based non-terrestrial network (NTN). These NTNs are expected to provide ubiquitous 5G services to user's equipment (especially, in Internet of Things/machine-type communications (IoT/MTC) public safety, and critical communications) by extending service coverage to areas not covered by 5G terrestrial networks. To this end, this NTN is developing scenarios to provide 5G services using spaceborne vehicles, such as geosynchronous and low-Earth orbit satellites, and airborne vehicles, such as unmanned aircraft systems, including high-altitude pseudo-satellites. In addition, various technologies are being studied to satisfy new requirements not considered in 5G NR, such as long propagation delay time, large cell coverage, large Doppler effect, and base station movement. In this paper, we present the scenarios, requirements, technical issues and solutions, and standardization planning for NR-based NTN in 3GPP.

8-VSB Remodulator for Retransmitting the Terrestrial Digital Broadcasting (지상파 디지털방송 재전송을 위한 8-VSB 재변조기)

  • Kim, Yoo-Won;Jo, Geun-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1525-1533
    • /
    • 2010
  • With the digital terrestrial television broadcasting transition, terrestrial television broadcasting have required the replacement of retransmission facilities for the analog broadcasting installed in the existing apartment, building, cable TV station, MATV system and so on. In addition, new standards have been enacted for retransmission of the digital television broadcasting in MATV system. To deal with this issue, in this paper, we propose a new 8-VSB remodulator that can retransmit signals of the terrestrial digital television broadcasting. Moreover, we present a standard and the process composition of the 8-VSB remodulator, and an experimental environment configuration for performance evaluation. To achieve this, we have implemented the 8-VSB remodulator with the sequential process components comprised of the RF signal retransmission, the TS stream modulator, the RF signal reception and demodulation. Through the simulation, we analyze the performance standard from the measured data such as spurious and phase noise. And then, we measure SNR and EVM of each attenuation step of the signal obtained by the signal processor and the 8-VSB remodulator with the same retransmission environment and conditions. Experimental results show that both the 8-VSB remodulator and the signal processor can be used as equipment for the retransmission of the terrestrial digital television broadcasting. In addition, the 8-VSB remodulator performed well to improve the transmission efficiency for the digital broadcasting signal, compare to the existing signal processor.

Construction of 3D Spatial Information of Vertical Structure by Combining UAS and Terrestrial LiDAR (UAS와 지상 LiDAR 조합에 의한 수직 구조물의 3차원 공간정보 구축)

  • Kang, Joon-Oh;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.57-66
    • /
    • 2019
  • Recently, as a part of the production of spatial information by smart cities, three-dimensional reproduction of structures for reverse engineering has been attracting attention. In particular, terrestrial LiDAR is mainly used for 3D reproduction of structures, and 3D reproduction research by UAS has been actively conducted. However, both technologies produce blind spots due to the shooting angle. This study deals with vertical structures. 3D model implemented through SfM-based image analysis technology using UAS and reproducibility and effectiveness of 3D models by terrestrial LiDAR-based laser scanning are examined. In addition, two 3D models are merged and reviewed to complement the blind spot. For this purpose, UAS based image is acquired for artificial rock wall, VCP and check point are set through GNSS equipment and total station, and 3D model of structure is reproduced by using SfM based image analysis technology. In addition, Through 3D LiDAR scanning, the 3D point cloud of the structure was acquired, and the accuracy of reproduction and completeness of the 3D model based on the checkpoint were compared and reviewed with the UAS-based image analysis results. In particular, accuracy and realistic reproducibility were verified through a combination of point cloud constructed from UAS and terrestrial LiDAR. The results show that UAS - based image analysis is superior in accuracy and 3D model completeness and It is confirmed that accuracy improves with the combination of two methods. As a result of this study, it is expected that UAS and terrestrial LiDAR laser scanning combination can complement and reproduce precise three-dimensional model of vertical structure, so it can be effectively used for spatial information construction, safety diagnosis and maintenance management.

Regulation of Common Reception System for Broadcasting Signal (방송 공동수신설비의 설치기준)

  • Her, Young-Tae;Kim, Kwang-Ui;Kwon, Won-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.183-184
    • /
    • 2008
  • From the beginning of a new millennium, the digital broadcasting services had been adopted to cable, satellite and radio broadcasting services as well as the terrestrial TV broadcasting services. The government established the installation standard of digital receiving equipment in 2007, which is needed for taking the new digital broadcasting services without additional facilities in an apartment house. In this paper, I will show the installation standard of digital receiving equipment in an apartment house and give a detailed explanation for the main criteria of it.

  • PDF

Design and Implementation of Intelligent IP Switch with Packet FEC for Ensuring Reliability of ATSC 3.0 Broadcast Streams

  • Lee, Song Yeon;Paik, Jong Ho;Dan, Hyun Seok
    • Journal of Internet Computing and Services
    • /
    • v.20 no.2
    • /
    • pp.21-27
    • /
    • 2019
  • The terrestrial ATSC 3.0 broadcasting system, which is capable of converging broadcast and communication services, uses IP based technology for data transmission between broadcasting equipment. In addition, data transmission between broadcasting equipment uses IP-based technology like existing wired communication network, which has advantageous in terms of equipment construction and maintenance In case IP based data transmission technology is used, however, it may inevitably cause an error that a packet is lost during transmission depending on the network environments. In order to cope with a broadcasting accident caused by such a transmission error or a malfunction of a broadcasting apparatus, a broadcasting system is generally configured as a duplication, which can transmit a normal packet when various types of error may occur. By this reason, correction method of error packets and intelligent switching technology are essential. Therefore, in this paper, we propose a design and implementation of intelligent IP switch for Ensuring Reliability of ATSC 3.0 Broadcast Streams. The proposed intelligent IP consists of IP Stream Analysis Module, ALP Stream Analysis Module, STL Stream Analysis Module and SMPTE 2022-1 based FEC Encoding/Decoding Module.