• Title/Summary/Keyword: Terrestrial Laser Scanner

Search Result 55, Processing Time 0.02 seconds

Application of Photo-realistic Modeling and Visualization Using Digital Image Data in 3D GIS (디지털 영상자료를 이용한 3D GIS의 사실적 모델링 및 가시화)

  • Jung, Sung-Heuk;Lee, Jae-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.73-83
    • /
    • 2008
  • For spatial analysis and decision-making based on territorial and urban information, technologies on 3D GIS with digital image data and photo-realistic 3D image models to visualize 3D modeling are being rapidly developed. Currently, satellite images, aerial images and aerial LiDAR data are mostly used to build 3D models and textures from oblique aerial photographs or terrestrial photographs are used to create 3D image models. However, we are in need of quality 3D image models as current models cannot express topographic and features most elaborately and realistically. Thus, this study analyzed techniques to use aerial photographs, aerial LiDAR, terrestrial photographs and terrestrial LiDAR to create a 3D image model with artificial features and special topographic that emphasize spatial accuracy, delicate depiction and photo-realistic imaging. A 3D image model with spatial accuracy and photographic texture was built to be served via 3D image map services systems on the Internet. As it was necessary to consider intended use and display scale when building 3D image models, in this study, we applied the concept of LoD(Level of Detail) to define 3D image model of buildings in five levels and established the models by following the levels.

Multi-core-based Parallel Query of 3D Point Cloud Indexed in Octree (옥트리로 색인한 3차원 포인트 클라우드의 다중코어 기반 병렬 탐색)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.301-310
    • /
    • 2013
  • The aim of the present study is to enhance query speed of large 3D point cloud indexed in octree by parallel query using multi-cores. Especially, it is focused on developing methods of accessing multiple leaf nodes in octree concurrently to query points residing within a radius from a given coordinates. To the end, two parallel query methods are suggested using different strategies to distribute query overheads to each core: one using automatic division of 'for routines' in codes controlled by OpenMP and the other considering spatial division. Approximately 18 million 3D points gathered by a terrestrial laser scanner are indexed in octree and tested in a system with a 8-core CPU to evaluate the performances of a non-parallel and the two parallel methods. In results, the performances of the two parallel methods exceeded non-parallel one by several times and the two parallel rivals showed competing aspects confronting various query radii. Parallel query is expected to be accelerated by anticipated improvements of distribution strategies of query overhead to each core.

Levee Maintenance Using Point Cloud Data Obtained from a Mobile Mapping System (모바일 매핑시스템을 이용한 제방 유지보수에 관한 연구)

  • Lee, Jisang;Hong, Seunghwan;Park, Il suk;Mohammad, Gholami Farkoushi;Kim, Chulhwan;Sohn, Hong-Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.469-475
    • /
    • 2021
  • In order to effectively maintain and manage river facilities, on going data collection of associated objects is important. However, the existing data acquisition methods of using a total station, a global navigation satellite system, or a terrestrial laser scanner have limitations in terms of cost/time/manpower when acquiring spatial information data on river facilities distributed over a wide and long area, unlike general facilities. In contrast, a mobile mapping system (MMS), which acquires data while moving its platform, acquires precise spatial information data for a large area in a short time, so it is suitable for use in the maintenance of linear facilities around rivers. As a result of applying a MMS to a research area of 4 km, 184,646,099 points were acquired during a 20-minute data acquisition period, and 378 cross-sections were extracted. By comparing this with computer-drawn river plans, it was confirmed that efficient levee management using a MMS is possible.

Enhancing the digitization of cultural heritage: State-of-Practice

  • Nguyen, Thu Anh;Trinh, Anh Hoang;Pham, Truong-An
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1075-1084
    • /
    • 2022
  • The use of Hi-Tech in cultural heritage preservation and the promotion of cultural heritage values in general, particularly artifacts, opens new opportunities for attracting tourists while also posing a challenge due to the need to reward high-quality excursions to visitors historical and cultural values. Building Information Modeling (BIM) and Hi-Tech in new building management have been widely adopted in the construction industry; however, Historic Building Information Modeling (HBIM) is an exciting challenge in 3D modeling and building management. For those reasons, the Scan-to-HBIM approach involves generating an HBIM model for existing buildings from the point cloud data collected by Terrestrial 3D Laser Scanner integrated with Virtual Reality (VR), Augmented Reality (AR), contributes to spatial historic sites simulation for virtual experiences. Therefore, this study aims to (1) generate the application of Virtual Reality, Augmented Reality to Historic Building Information Modeling - based workflows in a case study which is a monument in the city; (2) evaluate the application of these technologies to improve awareness of visitors related to the promotion of historical values by surveying the experience before and after using this application. The findings shed light on the barriers that prevent users from utilizing technologies and problem-solving solutions. According to the survey results, after experiencing virtual tours through applications and video explanations, participant's perception of the case study improved. When combined with emerging Hi-Tech and immersive interactive games, the Historic Building Information Modeling helps increase information transmission to improve visitor awareness and promote heritage values.

  • PDF

A Study on the Selection and Applicability Analysis of 3D Terrain Modeling Sensor for Intelligent Excavation Robot (지능형 굴삭 로봇의 개발을 위한 로컬영역 3차원 모델링 센서 선정 및 현장 적용성 분석에 관한 연구)

  • Yoo, Hyun-Seok;Kwon, Soon-Wook;Kim, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2551-2562
    • /
    • 2013
  • Since 2006, an Intelligent Excavation Robot which automatically performs the earth-work without operator has been developed in Korea. The technologies for automatically recognizing the terrain of work environment and detecting the objects such as obstacles or dump trucks are essential for its work quality and safety. In several countries, terrestrial 3D laser scanner and stereo vision camera have been used to model the local area around workspace of the automated construction equipment. However, these attempts have some problems that require high cost to make the sensor system or long processing time to eliminate the noise from 3D model outcome. The objectives of this study are to analyze the advantages of the existing 3D modeling sensors and to examine the applicability for practical use by using Analytic Hierarchical Process(AHP). In this study, 3D modeling quality and accuracy of modeling sensors were tested at the real earth-work environment.