• Title/Summary/Keyword: Terrain-based localization

Search Result 12, Processing Time 0.016 seconds

Real-time Data Enhancement of 3D Underwater Terrain Map Using Nonlinear Interpolation on Image Sonar (비선형 보간법을 이용한 수중 이미지 소나의 3 차원 해저지형 실시간 생성기법)

  • Ingyu Lee;Jason Kim;Sehwan Rho;Kee–Cheol Shin;Jaejun Lee;Son-Cheol Yu
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.110-117
    • /
    • 2023
  • Reconstructing underwater geometry in real time with forward-looking sonar is critical for applications such as localization, mapping, and path planning. Geometrical data must be repeatedly calculated and overwritten in real time because the reliability of the acoustic data is affected by various factors. Moreover, scattering of signal data during the coordinate conversion process may lead to geometrical errors, which lowers the accuracy of the information obtained by the sensor system. In this study, we propose a three-step data processing method with low computational cost for real-time operation. First, the number of data points to be interpolated is determined with respect to the distance between each point and the size of the data grid in a Cartesian coordinate system. Then, the data are processed with a nonlinear interpolation so that they exhibit linear properties in the coordinate system. Finally, the data are transformed based on variations in the position and orientation of the sonar over time. The results of an evaluation of our proposed approach in a simulation show that the nonlinear interpolation operation constructed a continuous underwater geometry dataset with low geometrical error.

Land Preview System Using Laser Range Finder based on Heave Estimation (Heave 추정 기반의 레이저 거리측정기를 이용한 선행지형예측시스템)

  • Kim, Tae-Won;Kim, Jin-Hyoung;Kim, Sung-Soo;Ko, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.64-73
    • /
    • 2012
  • In this paper, a new land preview system using laser range finder based on heave estimation algorithm is proposed. The proposed land preview system is an equipment which measures the shape of forward topography for autonomous vehicle. To implement this land preview system, the laser range finder is generally used because of its wide measuring range and robustness under various environmental condition. Then the current location of the vehicle has to be known to generate the shape of forward topography and sensors based on acceleration such as IMU and accelerometer are generally utilized to measure heave motion in the conventional land preview system. However the drawback to these sensors is that they are too expensive for low-cost vehicle such as mobile robot and their measurement error is increased for mobile robot with abrupt acceleration. In order to overcome this drawback, an algorithm that estimates heave motion using the information of odometer and previously measured topography is proposed in this paper. The proposed land preview system based on the heave estimation algorithm is verified through simulation and experiments for various terrain using a simulator and a real system.