• Title/Summary/Keyword: Terrain Data

Search Result 945, Processing Time 0.028 seconds

A feasibility modeling of potential dam site for hydroelectricity based on ASTGTM DEM data (ASTGTM 전지구 DEM 기반의 수력발전댐 적지분석 사전모델링)

  • Jang, Wonjin;Lee, Yonggwan;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.545-555
    • /
    • 2020
  • A feasibility modeling for potential hydroelectric dam site selection was suggested using 1 sec ASTGTM (ASTER Global Digital Elevation Model) and Terra/Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) derived land use (MCD12Q1) data. The modeling includes DEM pre-processing of peak, sink, and flat, river network generation, watershed delineation and segmentation, terrain analysis of stream cross section and reservoir storage, and estimation of submerged area for compensation. The modeling algorithms were developed using Python and as an open source GIS. When a user-defined stream point is selected, the model evaluates potential hydroelectric head, reservoir surface area and storage capacity curve, watershed time of concentration from DEM, and compensation area from land use data. The model was tested for 4 locations of already constructed Buhang, BohyunMountain, Sungdeok, and Yeongju dams. The modeling results obtained maximum possible heads of 37.0, 67.0, 73.0, 42.0 m, surface areas of 1.81, 2.4, 2.8, 8.8 ㎢, storages of 35.9, 68.0, 91.3, 168.3×106 ㎥ respectively. BohyunMountain and Sungdeok show validity but in case of Buhang and Yeongju dams have maximum head errors. These errors came from the stream generation error due to ASTGTM. So, wrong dam watershed boundary limit the head. This study showed a possibility to estimate potential hydroelectric dam sites before field investigation especially for overseas project.

A Comparative Study on General Circulation Model and Regional Climate Model for Impact Assessment of Climate Changes (기후변화의 영향평가를 위한 대순환모형과 지역기후모형의 비교 연구)

  • Lee, Dong-Kun;Kim, Jae-Uk;Jung, Hui-Cheul
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.4
    • /
    • pp.249-258
    • /
    • 2006
  • Impacts of global warming have been identified in many areas including natural ecosystem. A good number of studies based on climate models forecasting future climate have been conducted in many countries worldwide. Due to its global coverage, GCM, which is a most frequently used climate model, has limits to apply to Korea with such a narrower and complicated terrain. Therefore, it is necessary to perform a study impact assessment of climate changes with a climate model fully reflecting characteristics of Korean climate. In this respect, this study was designed to compare and analyze the GCM and RCM in order to determine a suitable climate model for Korea. In this study, spatial scope was Korea for 10 years from 1981 to 1990. As a research method, current climate was estimated on the basis of the data obtained from observation at the GHCN. Future climate was forecast using 4 GCMs furnished by the IPCC among SRES A2 Scenario as well as the RCM received from the NIES of Japan. Pearson correlation analysis was conducted for the purpose of comparing data obtained from observation with GCM and RCM. As a result of this study, average annual temperature of Korea between 1981 and 1990 was found to be around $12.03^{\circ}C$, with average daily rainfall being 2.72mm. Under the GCM, average annual temperature was between 10.22 and $16.86^{\circ}C$, with average daily rainfall between 2.13 and 3.35mm. Average annual temperature in the RCM was identified $12.56^{\circ}C$, with average daily rainfall of 5.01mm. In the comparison of the data obtained from observation with GCM and RCM, RCMs of both temperature and rainfall were found to well reflect characteristics of Korea's climate. This study is important mainly in that as a preliminary study to examine impact of climate changes such as global warming it chose appropriate climate model for our country. These results of the study showed that future climate produced under similar conditions with actual ones may be applied for various areas in many ways.

Study on the Local Weather Characteristics using Observation Data at the Boseong Tall Tower (보성 종합기상탑 자료를 활용한 국지기상 특성 연구)

  • Hwang, Sung Eun;Lee, Young Tae;Shin, Seung Sook;Kim, Ki Hoon
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.459-468
    • /
    • 2020
  • In this study, the selection criteria for the occurrence of sea breezes in the Boseong area during the spring season (March-May) of 2016-2017 were prepared for the analysis of vertical weather characteristics. For this purpose, wind speed values were determined using the measured precipitation, cloud volume, wind direction, the difference between the ground and sea temperature, a wind Profiler at an altitude of 1 km, and numerical model data. The dates of the sea breezes in Boseong were classified according to the selection criteria, and the spatial and temporal characteristics of the sea breezes were identified by analyzing the time and altitude of the sea breeze and the size of the wind speed. Sea breezes occurred 23 out of 183 days (12%), and in Boseong, at least 1.2 out of 10 spring days exhibited sea breezes. Sea winds ranged from 1200 to 1800 LST, mainly from ground to 700 m altitude during the day. In addition, the maximum wind speed averaged 4.9 m s-1, at an altitude of 40 m at 1600 LST, showing relatively lower values than those in a preceding study. This seems to be owing to the reduction in wind speed due to the complexity of the coastal terrain.

Application Possibility of Control Points Extracted from Ortho Images and DTED Level 2 for High Resolution Satellite Sensor Modeling (정사영상과 DTED Level 2 자료에서 자동 추출한 지상기준점의 IKONOS 위성영상 모델링 적용 가능성 연구)

  • Lee, Tae-Yoon;Kim, Tae-Jung;Park, Wan-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.103-109
    • /
    • 2007
  • Ortho images and Digital Elevation Model (DEM) have been applied in various fields. It is necessary to acquire Ground Control Points (GCPs) for processing high resolution satellite images. However surveying GCPs require many time and expense. This study was performed to investigate whether GCPs automatically extracted from ortho images and DTED Level 2 can be applied to sensor modeling for high resolution satellite images. We analyzed the performance of the sensor model established by GCPs extracted automatically. We acquired GCPs by matching satellite image against ortho images. We included the height acquired from DTED Level 2 data in these GCPs. The spatial resolution of the DTED Level 2 data is about 30m. Absolution accuracy of this data is below 18m above MSL. The spatial resolution of ortho image is 1m. We established sensor model from IKONOS images using GCPs extracted automatically and generated DEMs from the images. The accuracy of sensor modeling is about $4{\sim}5$ pixel. We also established sensor models using GCPs acquired based on GPS surveying and generated DEMs. Two DEMs were similar. The RMSE of height from the DEM by automatic GCPs and DTED Level 2 is about 9 m. So we think that GCPs by DTED Level 2 and ortho image can use for IKONOS sensor modeling.

  • PDF

Semi-Automatic Method for Constructing 2D and 3D Indoor GIS Maps based on Point Clouds from Terrestrial LiDAR (지상 라이다의 점군 데이터를 이용한 2차원 및 3차원 실내 GIS 도면 반자동 구축 기법 개발)

  • Hong, Sung Chul;Jung, Jae Hoon;Kim, Sang Min;Hong, Seung Hwan;Heo, Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2013
  • In rapidly developing urban areas that include high-rise, large, and complex buildings, indoor and outdoor maps in GIS become a basis for utilizing and sharing information pertaining to various aspects of the real world. Although an indoor mapping has gained much attentions, research efforts are mostly in 2D and 3D modeling of terrain and buildings. Therefore, to facilitate fast and accurate construction of indoor GIS, this paper proposes a semi-automatic method consisting of preprocessing, 2D mapping, and 3D mapping stages. The preprocessing is designed to estimate heights of building interiors and to identify noise data from point clouds. In the 2D mapping, a floor map is extracted with a tracing grid and a refinement method. In the 3D mapping, a 3D wireframe model is created with heights from the preprocessing stage. 3D mesh data converted from noise data is combined with the 3D wireframe model for detail modeling. The proposed method was applied to point clouds depicting a hallway in a building. Experiment results indicate that the proposed method can be utilized to construct 2D and 3D maps for indoor GIS.

Projection on First Flowering Date of Cherry, Peach and Pear in 21st Century Simulated by WRFv3.4 Based on RCP 4.5 and 8.5 Scenarios (WRF를 이용한 RCP 4.5와 8.5 시나리오 하의 21세기 벚, 복숭아, 배 개화일 변화 전망)

  • Hur, Jina;Ahn, Joong-Bae;Shim, Kyo-Moon
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.693-706
    • /
    • 2015
  • A shift of first fowering date (FFD) of spring blossoms (cherry, peach and pear) over the northest Asia under global warming is investiaged using dynamically downscaled daily temperature data with 12.5 km resolution. For the study, we obatained gridded daily data with Historical (1981~2010), and Representative Concentration Pathway (RCP) (2021~2100) 4.5 and 8.5 scenarios which were produced by WRFv3.4 in conjunction with HadGEM2-AO. A change on FFDs in 21st century is estimated by applying daily outputs of WRFv3.4 to DTS phonological model. Prior to projection on future climate, the performances of both WRFv3.4 and DTS models are evaluated using spatial distribution of climatology and SCR diagram (Normalized standard deviation-Pattern correlation coefficient-Root mean square difference). According to the result, WRFv3.4 and DTS models well simulated a feature of the terrain following characteristics and a general pattern of observation with a marigin of $1.4^{\circ}C$ and 5~6 days. The analysis reveals a projected advance in FFDs of cherry, peach and pear over the northeast Asia by 2100 of 15.4 days (9.4 days). 16.9 days (10.4 days) and 15.2 days (9.5 days), respectively, compared to the Historical simulation due to a increasing early spring (Februrary to April) temperature of about $4.9^{\circ}C$ ($2.9^{\circ}C$) under the RCP 8.5 (RCP 4.5) scenarios. This indicates that the current flowering of the cherry, peach and pear over analysis area in middle or end of April is expected to start blooming in early or middle of April, at the end of this century. The present study shows the dynamically downscaled daily data with high-resolution is helpeful in offering various useful information to end-users as well as in understanding regional climate change.

Evaluation of Spatial Characteristic of Wind Corridor Formation in Daegu Area using Satellite Data (위성자료를 활용한 대구지역 바람길생성의 공간적 특성평가)

  • Jung, Eung-Ho;Kim, Dae-Wuk;Ryu, Ji-Won;Cha, Jae-Gyu;Son, Kyung-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.73-84
    • /
    • 2008
  • This study has conducted the survey Daegu area on the evaluation of the wind generation by the spatial geograph conditions and according to the elements that practically affecting the generation of the wind. Because the elements affecting the wind generation are very diverse and interrelated, it is very important to secure accurate fundamental datas. For getting these datas, by applying satellite images to the study, more accurate datas were collected and the result of study is summarized as follows First of all, it has been acknowledged that due to the Daegu,s geographic features, there are a lot of areas with high wind generation, but most of these areas have been distributed in the outskirts of the city, where as in the areas wind generation is relatively very low in the urbanized areas, which indicate that the spatial unbalance is very high. And what is more of wind generation in certain areas where places spatially connected to the urbane district, show very low wind generations, and its influenced range become limited. From this fact, it can be estimated that the effects of the wind corridor coming into the urban district will be reduced. And also through this study, it could be verified that there are ample possibility of applying the satellite data as a means of building up the spatial data for evaluation of formation of the wind corridor.

  • PDF

Performance Tests of 3D Data Models for Laser Radar Simulation (레이저레이더 시뮬레이션을 위한 3차원 데이터 모델의 성능 테스트)

  • Kim, Geun-Han;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.97-107
    • /
    • 2009
  • Experiments using real guided weapons for the development of the LADAR(Laser radar) are not practical. Therefore, we need computing environment that can simulate the 3D detections by LADAR. Such simulations require dealing with large sized data representing buildings and terrain over large area. And they also need the information of 3D target objects, for example, material and echo rate of building walls. However, currently used 3D models are mostly focused on visualization maintained as file-based formats and do not contain such semantic information. In this study, as a solution to these problems, a method to use a spatial DBMS and a 3D model suitable for LADAR simulation is suggested. The 3D models found in previous studies are developed to serve different purposes, thus, it is not easy to choose one among them which is optimized for LADAR simulation. In this study, 4 representative 3D models are first defined, each of which are tested for different performance scenarios. As a result, one model, "Body-Face", is selected as being the most suitable model for the simulation. Using this model, a test simulation is carried out.

  • PDF

Construction of 3D Geospatial Information for Development and Safety Management of Open-pit Mine (노천광산 개발 및 안전관리를 위한 3차원 지형정보 구축 및 정확도 분석)

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • Open pit mines for limestone mining require rapid development of technologies and efforts to prevent safety accidents due to rapid deterioration of the slope due to deforestation and rapid changes in the topography. Accurate three-dimensional spatial information on the terrain should be the basis for reducing environmental degradation and safe development of open pit mines. Therefore, this study constructed spatial information about open pit mine using UAV(Unmanned Aerial Vehicle) and analyzed its utility. images and 3D laser scan data were acquired using UAV, and digital surface model, digital elevation model and ortho image were generated through data processing. DSM(Digital Surface Model) and ortho image were constructed using image obtained from UAV. Trees were removed using 3D laser scan data and numerical elevation models were produced. As a result of the accuracy analysis compared with the check points, the accuracy of the digital surface model and the digital elevation model was about 11cm and 8cm, respectively. The use of three-dimensional geospatial information in the mineral resource development field will greatly contribute to effective mine management and prevention of safety accidents.

Development of Tunnel-Environment Monitoring System and Its Installation III -Measurement in Solan Tunnel- (터널 환경 측정 시스템 개발 및 측정 III -솔안터널 측정결과 분석-)

  • Park, Won-Hee;Cho, Youngmin;Kwon, Tae-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.637-644
    • /
    • 2016
  • This paper is a follow-up to previous papers entitled, "Development of Tunnel-Environment Monitoring System and Its Installation" I [1] and II [2]. The target tunnel of these studies is the Solan Tunnel, which is a loop-type, single-track, 16.7-km-long tunnel located in mountainous terrain and passing through the Baekdudaegan mountain range. It is an ordinary railway tunnel designed for both freight and passenger trains. We analyzed the environmental conditions of the tunnel using temperature and humidity data recorded over approximately one year. The data were recorded using the Tunnel Rough Environment Measuring System (TREMS), which measures environmental data in subway and high-speed train tunnels and is installed in three locations inside the tunnel. Previous studies analyzed environmental conditions inside tunnels located in or near a city, whereas the tunnel in this study is located in a mountainous area. The tunnel conditions were compared with those measured outside the tunnel for each month. Hourly changes during summer and winter periods were also analyzed, and the environmental conditions at different locations inside the tunnel were compared. The results are widely applicable in studies on the thermal environment and air quality of tunnels, as well as for computer analysis of tunnel airflow such as tunnel ventilation and fire simulations.