• Title/Summary/Keyword: Ternary electrode

Search Result 26, Processing Time 0.02 seconds

The Study of the 160Ah Ni-MH battery for Diesel Engine Starting (디젤 엔진 시동을 위한 160Ah급 니켈 수소(Ni-MH) 축전지)

  • Park, Dong Pil;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • For this study, a 160Ah Ni-MH battery is produced with parallel arranged two 80Ah Ni-MH batteries as an unit, in order to start diesel generator(engine) in place of Lead Acid battery or Ni-cd battery which contain indicated toxic pollutant of Environmental pollution, by high capacity Ni-MH battery. And the ternary electrolyte recipe is requested to develop proper electrodes of the 160Ah Ni-MH battery, and then the 160Ah battery can be tested at high rate discharging performance. Zn is added to negative electrode for the improvement of performance. 160Ah Ni-MH battery has been tested in various experiments for diesel engine starting. As the result, diesel engine starting is found successfully.

Characteristics of electrodes using V-Ti based hydrogen storage alloys (V-Ti계 수소저장합금의 전극특성)

  • 김주완;이성만;백홍구
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.284-291
    • /
    • 1997
  • The electrode characteristics of two kinds of metal hydride electrodes using V-Ti (V-rich) based alloy were studied, in which one electrode was prepared by sintering the mixture of V-Ti alloy and Ni powders by a rapid thermal annealing technique and the other one was prepared using V-Ti-Ni ternary alloy, The discharge capacities of all electrodes during the charge-discharge cycling were completely deteriorated within 10 cycles. It appeared that the deterioration of the electrodes was caused by the dissolution of V in the near-surface region into the electrolyte and the formation of $TiO_2$ layer on the alloy particle surface. This degradation mechanism was supported by the facts that V is main hydride forming element and $TiO_2$ has very low electrical conductivity and hydrogen diffusivity.

  • PDF

Laser absorption spectroscopy of ternary gas mixture of He-Ne-Xe in External Electrode Fluorescent Lamp (EEFL) (레이저 흡수 분광법을 이용한 He-Ne-Xe 상종가스의 외부전곡 램프의 $1s_4$ 공명준위와 $1s_5$ 준안정준위의 제논 원자 밀도에 대한 연구)

  • Jeong, S.H.;Oh, P.Y.;Lee, J.H.;Cho, G.S.;Choi, E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.576-580
    • /
    • 2006
  • Mercury-free lamp, external electrode fluorescent lamp (EEFL) which includes the xenon gas, is now going on the research for the replacement of mercury lamp. The densities of excited xenon atom in the $1s_4$ resonance state and the $1s_5$ metastable state are investigated in the EEFL by a laser absorption spectroscopy under various gas pressures. We have measured the absorption signals for both $1s_4$ resonance and the $1s_5$ metastable state in the EEFL by varying the discharge currents for a given pressure. This basic absorption characteristic is very important for improvement of the VUV luminous efficiency of the EEFL as well as plasma display panel.

Thermoelectric/electrical characterization of electrodeposited BixTey thin films (전기도금법에 의해 전착된 BixTey 박막의 전기 및 열전 특성)

  • Yu, In-Jun;Lee, Gyu-Hwan;Kim, Yang-Do;Im, Jae-Hong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.308-308
    • /
    • 2012
  • Electrodeposition of thermoelectric materials, including binary and ternary compounds, have been attracting attentions, because its many advantages including cost-effectiveness, rapid deposition rate, and ease of control their microstructure and crystallinity by adjusting electrodeposition parameters. In this work, $Bi_xTe_y$ films were potentiostatically electrodeposited using Au/Ni(80/20 nm)/Si substrate as the working electrode in solutions consisting of 10mM $TeO_2$ and 1M $HNO_3$ where $Bi(NO_3)_3$ was varied from 2.5 to 10 mM. Prior to electrodeposition potentiostatically, linear sweep voltammograms (LSV) were acquired with a standard three-electrode cell. The $Bi_xTe_y$ films deposited using the electrolyte containing low Bi ions shows p-type conductivity, which might be attributed by the large incorporation of Te phases. Near stoichiometric $Bi_2Te_3$ thin films were obtained from electrolytes containing 5mM $Bi(NO_3)_3$. This film shows the maximum Seebeck coefficient of $-100.3{\pm}12.7{\mu}V/K$. As the increase of Bi ions in electrolytes decreases the Seebeck coefficient and resistivity. The maximum power factor of $336.2{\mu}W/m{\cdot}K^2$ was obtained from the film deposited using the solution of 7.5mM $Bi(NO_3)_3$.

  • PDF

The Preparation Characteristics of Vanadium-based Cathode for Lithium Secondary Battery (리튬이차전지용 바나듐계 양극의 제초 특성)

  • ;;N. Oyama
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.395-398
    • /
    • 1998
  • Lithium insertion has been studied in a number of vanadium oxides with special regard to their application as the active materials in rechargeable lithium cells. Very high stoichiometric energy densities for lithium insertion are found for several of these materials. Some vanadium oxides, e.g. V$_2$ $O_{5}$ and V$_{6}$ $O_{13}$, are now being used in commercially developed rechargeable Li batteries. Another material which is receiving remarkable attention for this kind of cells is LiV$_3$ $O_{8}$. In variety of ternary lithium-vanadium oxides, the lithium content can be varied between certain limits without major changes in the vanadium oxygen lattice. In our worts, the oxides which do net form these thermodynamically stable bronzes can still accommodate large amounts of lithium at ambient temperature, forming kinetically stable insertion compounds. These compounds owe their existence to the whereas lithium is easily introduced into these open structures. The oxides investigated are rather poor electronic conductors; the conductivity decrease with increase in the lithium content. Improvements in the electrode fabrication technique are needed to alleviate this Problem.oblem.

  • PDF

Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries (고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구)

  • Jeon, Young Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.120-132
    • /
    • 2021
  • Although the development of high-Nickel is being actively carried out to solve the capacity limitation and the high price of raw cobalt due to the limitation of high voltage use of the existing LiCoO2, the deterioration of the battery characteristics due to the decrease in structural stability and increase of the Ni content. It is an important cause of delaying commercialization. Therefore, in order to increase the high stability of the Ni-rich ternary cathod material LiNi0.6Co0.2Mn0.2O2, precursor Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2 was prepared using a nanosized TiO2 suspension type source for uniform Ti substitution in the precursor. It was mixed with Li2CO3, and after heating, the cathode active material LiNi0.6Co0.2Mn0.2-xTixO2 was synthesized, and the physical properties according to the Ti content were compared. Through FE-SEM and EDS mapping analysis, it was confirmed that a positive electrode active material having a uniform particle size was prepared through Ti-substituted spherical precursor and Particle Size Analyzer and internal density and strength were increased, XRD structure analysis and ICP-MS quantitative analysis confirmed that the capacity was effectively maintained even when the Ti-substituted positive electrode active material was manufactured and charging and discharging were continued at high temperature and high voltage.