• Title/Summary/Keyword: Ternary Solution

Search Result 131, Processing Time 0.031 seconds

Effect of Continuous Oil Phase on Preparation of Silver Halide Nanoparticles using AOT-Based W/O Microemulsions (AOT W/O 마이크로에멀젼을 이용한 할로겐화은 나노입자 제조에서 연속상 오일의 영향)

  • Jung, KilYong;Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.364-371
    • /
    • 2007
  • Effects of continuous oil phase on silver halide nanoparticles were investigated where nanoparticles were prepared using two different types of water-in-oil(W/O) microemulsions containing silver and halide, respectively. Phase behavior experiments for ternary systems containing AOT surfactant, hydrocarbon oil and aqueous solution of an inorganic salt showed that the region of one phase W/O microemulsion was found to be broadened with an increase in the alkyl chain length of a hydrocarbon mainly due to an increase in hydrophilic nature of a surfactant. With the information of phase behavior experiments, silver halide nanoparticles were prepared using different AOT-based microemulsion systems and photomicrographs obtained by transmission electron microscopy indicated that about 10 nm size particles of relatively spherical shape were obtained. It has been found that an increase in alkyl chain length of a hydrocarbon results in a decrease in particle size because of higher intermicellar exchange rate among microemulsion drops. The average particle size was also found to increase with the inorganic salt composition of initial aqueous solution.

Properties of Self-hardened Inorganic Coating in the System Alumina-Silica-Calcium Oxide by the Reaction with Alkalies (알칼리 반응에 의한 알루미나-실리카-산화칼슘계 무기질 자기경화 코팅의 특성)

  • Jeon, Chang-Seob;Song, Tea-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.381-386
    • /
    • 2010
  • Some basic properties of inorganic coatings hardened by the room temperature reaction with alkalies were examined. The coating paste was prepared from the powders in the system $Al_2O_3-SiO_2$-CaO using blast furnace slag, fly ash and amorphous ceramic fiber after mixing with a solution of sodium hydroxide and water glass. The mineralogical and morphological examinations were performed for the coatings prepared at room temperature and after heating to $1200^{\circ}C$ respectively. The binding force of the coating hardened at room temperature was caused by the formation of fairly dense matrix mainly composed of oyelite-containing amorphous phase formed by the reaction between blast furnace slag and alkali solution. At the temperature, fly ash and ceramic fiber was not reacted but imbedded in the binding phase, giving the fluidity to the paste and reinforcing the coating respectively. During heating up to $1200^{\circ}C$, instead of a break in the coating, anorthite and gehlenite was crystallized out by the reaction among the binding phase and unreacted components in ternary system. The crystallization of these minerals revealed to be a reason that the coating maintains dense morphology after heating. The maintenance of binding force after heat treatment is seemed to be also caused by the formation of welldispersed fiber-like mineral phase which is originated from the shape of the amorphous ceramic fiber used as a raw materials.

Iontophoretic Delivery of Levodopa: Permeation Enhancement by Oleic Acid Microemulsion and Ethanol (Levodopa의 이온토포레시스 경피전달: 올레인산 아이크로에멀젼 및 에탄올의 투과증진)

  • Jung, Shin-Ae;Gwak, Hye-Sun;Chun, In-Koo;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.373-380
    • /
    • 2008
  • In order to develop optimal formulation and iontophoresis condition for the transdermal delivery of levodopa, we have evaluated the effect of two permeation enhancers, ethanol and oleic acid in microemulsion, on transdermal delivery of levodopa. In vitro flux studies were performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. Current density applied was $0.4\;mA/cm^2$ and current was off after 6 hours application. Levodopa was analysed by HPLC at 280 nm. The o/w microemulsions of oleic acid in buffer solution (pH 2.5 & 4.5) were prepared using oleic acid, Tween 80 and ethanol. The existence of microemulsion regions were investigated in pseudo-ternary phase diagrams. Contrary to our expectation, cumulative amount of levodopa transported from microemulsion (pH 2.5) for 10 hours was similar to that from aqueous solution in all delivery methods (passive, anodal and cathodal). When pH of the micro-emulsion was pH 4.5, cumulative amount of levodopa transported for 10 hours increased about 40% (anodal) to 50% (cathodal), when compared to that from aqueous solution. Flux from pH 4.5 microemulsion showed higher value than that from pH 2.5 in all delivery methods. These results seem to indicate that electroosmosis plays more dominant role than electrorepulsion in the flux of levodopa at pH 2.5. The effect of ethanol on iontophoretic flux was studied using pH 2.5 phosphate buffer solution containing 3% or 5% (v/v) ethanol. Flux enhancement was observed in passive and anodal delivery as the concentration of the ethanol increased. Without ethanol, cathodal delivery showed higher flux than anodal delivery. Anodal delivery increased the cumulative amount of levodopa transported 1.6 fold by 5% ethanol after 10 hours. However, in cathodal delivery, no flux enhancement of levodopa was observed during current application and only marginal increase in cumulative amount transported after 10 hours was observed by 5% ethanol. These results seem to be related to the decrease in dielectric constant of the medium and the lipid extraction of the ethanol, which decrease the electroosmotic flow, and thus decrease the flux. Overall, the results provide important insights into the role of electroosmosis and electrorepulsion in the transport of levodopa through skin, and provide some useful informations for optimal formulation for levodopa.

Studies on the Micelle Formation of Surfactant Solution(2) - Self-Diffusion by Phase Transition in Ternary System of Surfactant/Hydrocarbon/Water - (계면활성제 수용액에서 미셀형성(제2보) - 계면활성제/탄화수소/물의 상 변화에 따른 자기확산 -)

  • Choi, Seung Ok;Lee, Jin Hee;Kim, Sang Chun;Nam, Ki Dae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.112-117
    • /
    • 1999
  • The pulsed field gradient NMR method has been used to determine self-diffusion coefficients in ternary N-alkyl-N, N-dimethylamine oxide/hydrocarbon/$D_2O$ system. For n = 12, 14, 16 and n' = 8, 10, 12, 14, 16, in the micellar phase, diffusion is chiefly governed by the hydrodynamic transport of micelles, supplemented by an exchange of solubilized hydrocarbon upon micellar collisions. This investgation is performed by variations in both the surfactant alkyl chain length and in the size of the hydrocarbon molecules. In cubic phases, the solvent still exhibits values of the diffusion coefficients which are typical for motion in a continuous water phase, with the microemulsion droplets acting as obstacle. Mobilities of the surfactant in the gel state were low and have been determined only for the surfactant($C_{12}DMAO$) with the shortest alkyl chain length. Exchange of hydrocarbon between micellar entities in the gel was found to be occured by a hopping process, the associated rate decreased with alkyl chain length of the surfactant.

  • PDF

Electrochemical Characteristics of Nanotubular Ti-25Nb-xZr Ternary Alloys for Dental Implant Materials

  • Byeon, In-Seop;Park, Seon-Young;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.10 no.1
    • /
    • pp.10-21
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the electrochemical characteristics of nanotubular Ti-25Nb-xZr ternary alloys for dental implant materials. Materials and Methods: Ti-25Nb-xZr alloys with different Zr contents (0, 3, 7, and 15 wt.%) were manufactured using commercially pure titanium (CP-Ti), niobium (Nb), and zirconium (Zr) (99.95 wt.% purity). The alloys were prepared by arc melting in argon (Ar) atmosphere. The Ti-25Nb-xZr alloys were homogenized in Ar atmosphere at $1,000^{\circ}C$ for 12 hours followed by quenching into ice water. The microstructure of the Ti-25Nb-xZr alloys was examined by a field emission scanning electron microscope. The phases in the alloys were identified by an X-ray diffractometer. The chemical composition of the nanotube-formed surfaces was determined by energy-dispersive X-ray spectroscopy. Self-organized $TiO_2$ was prepared by electrochemical oxidation of the samples in a $1.0M\;H_3PO_4+0.8wt.%$ NaF electrolyte. The anodization potential was 30 V and time was 1 hour by DC supplier. Surface wettability was evaluated for both the metallographically polished and nanotube-formed surfaces using a contact-angle goniometer. The corrosion properties of the specimens were investigated using a 0.9 wt.% aqueous solution of NaCl at $36^{\circ}C{\pm}5^{\circ}C$ using a potentiodynamic polarization test. Result: Needle-like structure of Ti-25Nb-xZr alloys was transform to equiaxed structure as Zr content increased. Nanotube formed on Ti-25Nb-xZr alloys show two sizes of nanotube structure. The diameters of the large tubes decreased and small tubes increased as Zr content increased. The lower contact angles for nanotube formed Ti-25NbxZr alloys surfaces showed compare to non-nanotube formed surface. The corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface showed longer the passive regions compared to non-treatment surface. Conclusion: It is confirmed that corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface has longer passive region compared to without treatment surface.

Phase Behavior of Simvastatin Drug in Mixtures of Dichloromethane and Supercritical Carbon Dioxide and Microparticle Formation of Simvastatin Drug Usins Supercritical Anti-Solvent Process (디클로로메탄과 초임계 이산화탄소의 혼합용매에서 Simvastatin 약물의 상거동과 초임계 역용매 공정을 이용한 Simvastatin 약물 미세입자의 제조)

  • Oh, Dong-Joon;Lee, Byung-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.34-45
    • /
    • 2007
  • Phase behavior of the ternary systems of water-insoluble simvastatin drug, which is well known to be effective drugs for hypercholesterolemia therapy, in solvent mixtures of dichloromethane and supercritical carbon dioxide was investigated to present a guideline of establishing operating conditions in the particle formation of the drugs by a supercritical anti-solvent recrystallization process utilizing dichloromethane as a solvent and carbon dioxide as an anti-solvent. The solubilities of simvastatin in the mixtures of dichloromethane and carbon dioxide were determined as functions of temperature, pressure and solvent composition by measuring the cloud points of the ternary mixtures at various conditions using a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The solubility of the drug increased as the dichloromethane composition in solution and the system pressure increases at a fixed temperature. A lower solubility of the drug was obtained at a higher temperature. The second half of this work is focused on the particle formation of the simvastatin drug by a supercritical anti-solvent recrystallization process in a cylindrical high-pressure vessel equipped with an impeller. Microparticles of the simvastatin drug were prepared as functions of pressure (8 MPa to 12 MPa), temperature (303.15 K, 313,15 K), feed flow rate of carbon dioxide, and stirring speed (up to 3000 rpm), in order to observe the effect of those process parameters on the size and shape of the drug microparticles recrystallized.

  • PDF

Thermodynamics of Hydrogen-Induced Phase Separation on Pd-Co Alloys (수소유기에 따른 Pd-Co합금들의 상 분리 현상에 대한 열역학적 고찰)

  • Song, D.M.;Park, C.N.;Choi, J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.3
    • /
    • pp.244-252
    • /
    • 2005
  • It is very interesting and important in the academic point of view and in practical use the hydrogen-induced phase separation(HIPS) which appears during hydrogen heat treatment. Since hydrogen can be removed very fast by pumping it out the hydrogen-induced new lattice phase which can not be obtained without hydrogen can be preserved as meta-stable state. In this study it has been investigated whether the HIPS appear in Pd-Al, Pd-Co, Pd-Cr, Pd-Ti, Pd-V and Pd-Zr alloys and discussed thermodynamic representation of the HIPS. The Pd alloys were arc-melted under argon atmosphere and remelted 4 or 5 times for homogenization. The alloys were annealed at 600$^{\circ}C$ under vacuum for 24 hrs and then subjected to pressure-composition isotherm measurements at 100$^{\circ}C$. The hydrogen heat treatment(HHT) of samples was carried out at 600$^{\circ}C$ under hydrogen pressure of 70 bar for 6 days and PC isotherms at 100$^{\circ}C$ were measured. By comparing the PC isotherms measured before and after HHT, occurrence of phase separation was determined. The experimental results showed that the HIPS appeared only in Pd-0.05Co alloy. For Pd-Co alloys with various composition the PC isotherms were measured. By adopting Park-Flanagan model for ternary thermodynamics the Gibbs free energy change for Pd-Co-H solid solution was calculated and subsequently with this the HIPS in Pd-Co alloy was explained fairly.

Liquid-Liquid Equilibrium for the Quaternary System Water + Tetrahydrofuran + Butyl Acetate + Isoamyl Alcohol Mixture at 298.15 K and Atmospheric Pressure (1 atm 298.15 K에서 4성분 Water+Tetrahydrofuran+Butyl Acetate+Isoamyl Alcohol 계의 액-액평형)

  • Kim, Young-Kyu;Ok, Dong-Seok;Park, Dong-Won
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.632-637
    • /
    • 2010
  • Liquid-liquid equilibrium data for the quaternary system water +tetrahydrofuran + butyl acetate + isoamyl alcohol mixture were measured at 298.15 K and atmospheric pressure. Binodal curves, tie-lines, distribution, and selectivity for the quaternary system have been determined in order to investigate the effect of using binary solvents, butyl acetate and isoamyl alcohol, on extracting tetrahydrofuran from aqueous solution. In addition, these experimental tie-line data were also compared with the values predicted by the UNIFAC model. For the quaternary system, an average root-mean-square deviation for the system in 75/25, 50/50, and 25/75 mass ratios as mixed solvents are(3.35, 5.21 and 5.65) %, respectively.

A Study on Flash Points of a Flammable Substancea - Focused on Prediction of Flash Points in Ternary System by Solution Theory - (가연성물질의 인화점에 관한 연구 -용액론에 의한 3성분계의 인화점 예측을 중심으로-)

  • 하동명;이수경
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.14-20
    • /
    • 2001
  • The flash points are one of the most important fundamental properties used to determine the potential for fire and explosion hazards of flammable substances. A classification of the flash points is important for the safe handling of flammable liquids which constitute the solvent mixtures. Basic to all flash points behavior are vapor pressure and explosive limits(lower explosive limit and upper explosive limit). The flash points of flammable solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this study, the reference values of lower flash points were compared with the calculated values by using Raoult's law and MRSM(modified response surface methodology) model. The lower flash points were in agreement with the predicted by Raoult's law and MRSM model. By means of this methodology, it is possible to evaluate reliability of experimental data of the flash points of the flammable mixtures.

  • PDF

Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosive Properties

  • Calderon Moreno, J.M.;Drob, P.;Vasilescu, C.;Drob, S.I.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.257-264
    • /
    • 2017
  • Film of new Ti-15Zr-5Nb alloy formed during galvanic anodizing in orthophosphoric acid solution was characterized by optical microscope, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman micro-spectroscopy. Its anticorrosive properties were determined by electrochemical techniques. The film had a layer with nanotube-like porosity with diameters in 500-1000 nm range. The nano layer contained significant amounts of P and O as well as alloying element. Additionally, Raman micro-spectroscopy identified oxygen as oxygen ion in $TiO_2$ anatase and phosphorous as $P_2O_7{^{4-}}$ ion in phosphotitanate compound. All potentiodynamic polarization curves in artificial Carter-Brugirard saliva with pH values (pH= 3.96, 7.84, and 9.11) depending on the addition of 0.05M NaF revealed nobler behavior of anodized alloy and higher polarization resistance indicating the film is thicker and more compact nanolayer. Lower corrosion rates of the anodized alloy reduced toxicity due to less released ions into saliva. Bigger curvature radii in Nyquist plot and higher phase angle in Bode plot for the anodized alloy ascertain a thicker, more protective, insulating nanolayer existing on the anodized alloy. Additionally, ESI results indicate anodized film consists of an inner, compact, barrier, layer and an outer, less protective, porous layer.