• Title/Summary/Keyword: Terminator

Search Result 122, Processing Time 0.016 seconds

Use of Human Serum Albumin Fusion Tags for Recombinant Protein Secretory Expression in the Methylotrophic Yeast Hansenula polymorpha (메탄올 자화효모 Hansenula polymorpha에서의 재조합 단백질 분비발현을 위한 인체 혈청 알부민 융합단편의 활용)

  • Song, Ji-Hye;Hwang, Dong Hyeon;Oh, Doo-Byoung;Rhee, Sang Ki;Kwon, Ohsuk
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • The thermotolerant methylotrophic yeast Hansenula polymorpha is an attractive model organism for various fundamental studies, such as the genetic control of enzymes involved in methanol metabolism, peroxisome biogenesis, nitrate assimilation, and resistance to heavy metals and oxidative stresses. In addition, H. polymorpha has been highlighted as a promising recombinant protein expression host, especially due to the availability of strong and tightly regulatable promoters. In this study, we investigated the possibility of employing human serum albumin (HSA) as the fusion tag for the secretory expression of heterologous proteins in H. polymorpha. A set of four expression cassettes, which contained the methanol oxidase (MOX) promoter, translational HSA fusion tag, and the terminator of MOX, were constructed. The expression cassettes were also designed to contain sequences for accessory elements including His8-tag, $2{\times}(Gly_4Ser_1)$ linkers, tobacco etch virus protease recognition sites (Tev), multi-cloning sites, and strep-tags. To determine the effects of the size of the HSA fusion tag on the secretory expression of the target protein, each cassette contained the HSA gene fragment truncated at a specific position based on its domain structure. By using the Green fluorescence protein gene as the reporter, the properties of each expression cassette were compared in various conditions. Our results suggest that the translational HSA fusion tag is an efficient tool for the secretory expression of recombinant proteins in H. polymorpha.

Mutational Analysis of MECP2 Gene in 34 Rett Syndrome (Rett 증후군 34례의 MECP2 유전자 변이에 관한 연구)

  • Park, Sang Jo;Hwang, Tae Gyu;Son, Byeong Hee;Kim, Chul Min
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.10
    • /
    • pp.1263-1272
    • /
    • 2002
  • Purpose : Rett syndrome(RTT) is an X-linked dominant neurodevelopmental disorder affecting 1 per 10,000-15,000 female births worldwide. It was initially described by Andreas Rett in 1966. RTT involves developmental regression characterized stereotypic hand movements, tremors, gait apraxia, seizures, deceleration of head growth after the age of 6-18 months. The disease-causing gene was identified as MECP2 on chromosome Xq28. We carried out mutational analysis of MECP2 genes in RTT patients. Methods : Whole blood(5 cc) of 34 sporadic RTT patients was collected in EDTA-anticoagulated tubes. Genomic DNA was extracted from peripheral blood using the E.Z.N.A. blood DNA kit. Four exons of the MECP2 gene were amplified by PCR in 34 Korean with RTT. We carried out PCR divided the exon three into two parts and the exon four into five parts. Primer sequences designed by Amir et al. in 1999 were almost used(AF030876). Sequencing primers used were the same as PCR. DNA sequencing reactions were performed using an ABI 377 DNA sequencer and ABI PRISM dye terminator cycle sequencing reaction kit(Perkin-elmer). The results were compared with the normal DNA sequence(X99686). To confirm the change of sequence on novel mutations, RFLP analysis was performed. Results : The MECP2 mutations were detected in 23(67.6%) of the 34 patients. The mutations consisted of 12 different types including nine missense and three nonsense mutations. Of these, three (L100V, G161E and T311M) mutations were newly identified. Most of the mutations discovered are located within MBD(39.1%) and TRD(39.1%). In this study, three(T158M, R270X, R306C) mutations were identified high frequency. Conclusion : MECP2 gene was also an important cause of Korean RTT patients. MECP2 gene study is an important tool for diagnosis of Korean RTT patients.