• Title/Summary/Keyword: Terminal crosslinking

Search Result 4, Processing Time 0.019 seconds

Synthesis and Evaluation of Polymer for Crosslinking Cells

  • Ito, Michiko;Taguchi, Tetsushi;Kobayashi, Hisatoshi;Tateishi, Tetsuya
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.266-266
    • /
    • 2006
  • The cell spheroid (multicellular mass) is enhanced cell functions because of the cell-cell interaction compared with the individual cell. The objective of this study is synthesis, characterization and evaluation of novel crosslinkers to form spheroid in a short time. Our approach to bridge cells is based on the crosslinking of the cell membrane via the hydrophobic interaction. The crosslinker was prepared by the reaction between ethylenediamine and poly(ethylene glycol) (PEG) derivative with oleyl group as hydrophobic group at the terminal group. The product was characterized with gel permeation chromatography (GPC) and FT-IR. Furthermore, cell culture experiment was also performed to confirm spheroid formation. The function of prepared spheroids was evaluated.

  • PDF

Synthesis and Properties of Liquid Crystal Compounds and Epoxy Resin Based Side Chain Liquid Crystal Polymers II. Linear and Crosslinked Epoxy LC Polymers (방향족 액정동족체 및 Epoxy형 측쇄 액정고분자의 합성 및 성질 II. 선형 및 가교형 측쇄 액정고분자)

  • Ahn, Wonsool;Chang, Jin Gyu;Keum, Chang Dae;Park, Lee Soon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.71-75
    • /
    • 1998
  • Liquid crystalline compounds with amine terminal group and related linear and cross-linked liquid crystal polymers with epoxy resin structure were synthesized and characterized to develope matrix materials for polymer dispersed liquid display applications. Both linear and crosslinked side chain type liquid crystal polymers made with aromatic amine mesogens and ethylene glycol diglycidyl ether exhibited nematic texture as shown by polarized optical microscope(POM) and their transition temperatures were determined both by DSC and POM. Liquid crystal polymer samples also showed even-odd effect as the spacer length of aromatic amine mesogens were varied, however, the effect was samller than that of low molecular weight mesogens. Changes of nematic-to-isotropic transition($T_{NI}$) of crosslinked type polymer liquid crystals were also disscussed in relation to the concentration change of crosslinking agent 1,10-diaminodecane.

  • PDF

Preparation and Characterization of Biodegradable Hydrogels for Tissue Expander Application (조직 확장기용 생분해성 하이드로젤의 제조 및 특성분석)

  • Yuk, Kun-Young;Kim, Ye-Tae;Im, Su-Jin;Garner, John;Fu, Yourong;Park, Ki-Nam;Park, Jeong-Sook;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • In this study, we prepared and evaluated a series of biocompatible and biodegradable block copolymer hydrogels with a delayed swelling property for tissue expander application. The hydrogels were synthesized via a radical crosslinking reaction of poly(ethylene glycol) (PEG) diacrylate and poly(D,L-lactide-co-glycolide)-poly(ethylene glycol)-poly(D,L-lactide-co-glycolide)(PLGA-PEG-PLGA) triblock copolymer diacrylate as a swelling/degradation controller (SDC). For the synthesis of various SDCs that can lead to different degradation and swelling properties, various PLGA-PEG-PLGA triblock copolymers with different LA/GA ratios and different PLGA block lengths were synthesized and modified to have terminal acrylate groups. The resultant hydrogels were flexible and elastic even in the dry state. The in vitro degradation tests showed that the delayed swelling properties of the hydrogels could be modulated by varying the chemical composition of the biodegradable crosslinker (SDC) and the block ratio of SDC/PEG. The histopathologic observation after implantation of hydrogels in mice was performed and evaluated by macrography and microscopy. Any significant inflammation or necrosis was not observed in the implanted tissues. Due to their biocompatibility, elasticity, sufficient swelling pressure, delayed swelling and controllable degradability, the hydrogels could be useful for tissue expansion and other biomedical applications.