• Title/Summary/Keyword: Terminal condition

Search Result 382, Processing Time 0.023 seconds

Establishment of the expression system of human HtrA2 in the zebrafish (Zebrafish 동물모델에서 human HtrA2의 expression system 정립에 관한 연구)

  • Cho, Sung-Won;Park, Hyo-Jin;Kim, Goo-Young;Nam, Min-Kyung;Kim, Ho-Young;Ko, In-Ho;Kim, Cheol-Hee;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.571-578
    • /
    • 2006
  • HtrA2/Omi, a mitochondrial trypsin-like serine protease, is pivotal in regulating apoptotic cell death. Several lines of recent evidence suggest that HtrA2 is associated with the pathogenesis of neurodegenerative disorders; however, the physiological function of HtrA2 still remains elusive. For studying physiological function of HtrA2 in depth, it is necessary to develop a suitable expression system in the model animal. We therefore utilized the zebrafish as a model animal to establish expression of human HtrA2 (hHtrA2) in vivo. For expression of mature HtrA2 as GFP fusion in zebrafish embryos, the HtrA2 (WT) or (S306A) cDNAs with the C-terminal GFP tag were inserted into the pCS2+ plasmid. Expression patterns of HtrA2 in HEK293 cells were first monitored by immunofluorescence staining and immunoblot assays, showing approximately 64 kDa of the HtrA2-GFP fusion proteins. Subsequently, the hHtrA2 plasmid DNA or in vitro transcribed mRNA was microinjected into zebrafish embryos. The expression patterns of HtrA2 in Zebrafish embryos were monitored by GFP fluorescence in 24 hours-post-fertilization (hpf). Although expression patterns of HtrA2-GFP in developing embryos were different between the injected DNA and mRNA, both nucleic acids revealed good expression levels to further study the physiological role of HtrA2 in vivo. This study provides a suitable condition for expressing hHtrA2 in the zebrafish embryos as well as a method for generating useful system to investigate physiological properties of the specific human genes.

Development of Lateral Flow Immunofluorescence Assay Applicable to Lung Cancer (폐암 진단에 적용 가능한 측면 유동 면역 형광 분석법 개발)

  • Supianto, Mulya;Lim, Jungmin;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.173-178
    • /
    • 2022
  • A lateral flow immunoassay (LFIA) method using carbon nanodot@silica as a signaling material was developed for analyzing the concentration of retinol-binding protein 4 (RBP4), one of the lung cancer biomarkers. Instead of antibodies mainly used as bioreceptors in nitrocellulose membranes in LFIA for protein detection, aptamers that are more economical, easy to store for a long time, and have strong affinities toward specific target proteins were used. A 5' terminal of biotin-modified aptamer specific to RBP4 was first reacted with neutravidin followed by spraying the mixture on the membrane in order to immobilize the aptamer in a porous membrane by the strong binding affinity between biotin and neutravidin. Carbon nanodot@silica nanoparticles with blue fluorescent signal covalently conjugated to the RBP4 antibody, and RBP4 were injected in a lateral flow manner on to the surface bound aptamer to form a sandwich complex. Surfactant concentrations, ionic strength, and additional blocking reagents were added to the running buffer solution to optimize the fluorescent signal off from the sandwich complex which was correlated to the concentration of RBP4. A 10 mM Tris (pH 7.4) running buffer containing 150 mM NaCl and 0.05% Tween-20 with 0.6 M ethanolamine as a blocking agent showed the optimum assay condition for carbon nanodot@silica-based LFIA. The results indicate that an aptamer, more economical and easier to store for a long time can be used as an alternative immobilizing probe for antibody in a LFIA device which can be used as a point-of-care diagnosis kit for lung cancer diseases.