• Title/Summary/Keyword: Terminal Shock

Search Result 84, Processing Time 0.025 seconds

Identification of Potential Substrates of N-acteylglucosamine Kinase by a Proteomic Approach (프로테오믹스를 이용한 N-아세틸글루코사민 인산화효소 기질단백질의 동정)

  • Lee, HyunSook;Moon, Il Soo
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.586-594
    • /
    • 2013
  • Post-translational O-GlcNAc modification (O-GlcNAcylation) of serine or threonine is a new protein modulation mechanism. In contrast to the classical glycosylation, O-GlcNAcylation occurs in a one-step transfer of O-GlcNAc on both nuclear and cytoplasmic proteins. In contrast to the general consensus that O-GlcNAc is a final modification, a recent paper (J Proteome Res. 2011 10:2725-2733) showed the presence of O-GlcNAc-P on a synaptic assembly protein AP180. This finding raises a fundamental question about its prevalence. To address this question, we used proteomics to identify those proteins that were phospho-signal enriched by GlcNAc kinase (NAGK). Comparison of pDsRed2-$NAGK_{WT}$-transfected HEK293T cell extract with pDsRed2-$NAGK_{D107A}$-transfected control culture revealed 15 phospho-signal increased spots. Excluding those spots that had no detectable amount of protein expression yielded 7 spots, which were selected for ID determination. Among these, two duplicate spots (two $HSP90{\beta}$ and two ENO1 spots) were shown to be O-GlcNAcylated, two (dUTP nucleotidohydrolase mitochondrial isoform 2, glutathione S-transferase P) were not known to be involved in O-GlcNAcylation, and one (heat shock protein gp96 precursor or grp94) was a glycoprotein. The increase in the phospho-levels of O-GlcNAc by NAGK strongly indicates that these proteins are phosphorylated on O-GlcNAc. Our present data support the idea that O-GlcNAc is not a terminal modification.

Molecular Cloning of Novel Genes Specifically Expressed in Snailfish, Liparis tanakae (꼼치, Liparis tanakae에서 특이하게 발현되는 새로운 유전인자의 검색)

  • 송인선;이석근;손진기
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.67-77
    • /
    • 2000
  • Snailfish usually lives at the bottom of the sea and showed typical retrogressive change with specialized tissue structures of skin and skeletons. In order to obtain the specific genes of snailfish, highly expressed in the body, we made subtracted cDNA library and analyzed 200 clones. Totally 200 clones were obtained and sequenced, and among them 62 clones were turned out to be homologous to the known gene, i.e., thioesterase (9), myosin (8), creatine kinase (7), skeletal alpha-actin (6), parvalbumin b (5), ribosomal protein (5), type I collagen (3), muscle troponin (3), dopamine receptor (2), histatin (2), and heat shock protein (2), cystatin (1), lectin (1), statherin (1), secretory carrier membrane protein (1), keratin type I (1), desmin (1), chloroplast (1), muscle tropomyosin (1), reticulum calcium ATPase (1), ribonucleoprotein (1). The remaining 138 clones were low homologous or non-redundant genes through Genbank search. Especially 5 clones were novel and specifically expressed in the body tissues of Snailfish by in situ hybridization. Therefore, we analysed these 5 clones to identify the C-terminal protein structures and motifs, and partly defined the roles of these proteins in comparison with the expression patterns by in situ hybridization. C9O-77, about 5000 bp, was supposed to be a matrix protein expressed strongly positive in epithelium, myxoid tissue, fibrous tissue and collagenous tissue. C9O-116, about 1500 bp, was supposed to be a transmembrane protein which was weakly expressed in the fibrous tissue, epithelium tissue, and myxoid tissue, but strong in muscle tissue. C9O-130, about 1200 bp, was supposed to be an intracytoplasmic molecule usually in the epithelial cells. C9O-161, about 2000 bp, was weakly expressed in epithelium, muscle tissue and myxoid tissue, but specially strong in epithelium. C9O-171, about 1000 bp, was supposed to be a transcription factor containing zinc finger like domain, which was intensely expressed in the epithelium, muscle tissue, fibrous tissue, and in collagenous tissue.

  • PDF

Hsp90 Inhibitor Induces Cell Cycle Arrest and Apoptosis of Early Embryos and Primary Cells in Pigs

  • Son, Myeong-Ju;Park, Jin-Mo;Min, Sung-Hun;Hong, Joo-Hee;Park, Hum-Dai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.33-45
    • /
    • 2011
  • Heat shock protein 90 (Hsp90) is ATPase-directed molecular chaperon and affects survival of cancer cell. Inhibitory effect of Hsp90 by inducing cell cycle arrest and apoptosis in the cancer cell was reported. However, its role during oocyte maturation and early embryo development is very insufficient. In this study, we traced the effects of Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), on meiotic maturation and early embryonic development in pigs. We also investigated several indicators of developmental potential, including structural integrity, gene expression (Hsp90-, cell cycle-, and apoptosis-related genes), and apoptosis, which are affected by 17-AAG. Then, we examined the roles of Hsp90 inhibitor on viability of primary cells in pigs. Porcine oocytes were cultured in the NCSU-23 medium with or without 17-AAG for 44 h. The proportion of GV arrested oocytes was significantly different between the 17-AAG treated and untreated group (78.2 vs 34.8%, p<0.05). After completion of meiotic maturation, the proportion of MII oocytes was lower in the 17-AAG treated group than in the control group (27.9 vs 71.0%, p<0.05). After IVF, the percentage of penetrated oocytes was significantly lower in the 17-AAG treated group (25.2%), resulting in lower normal pronucleus formation (2PN of 14.6%). Therefore, the inhibition of meiotic progression by Hsp90 inhibitor played a critical role in fertilization status. Porcine embryo were cultured in the PZM-3 medium with or without 17-AAG for 6 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without 17-AAG. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 17-AAG treated group compared with control (7.5 vs 4.4, respectively). Blastocysts that developed in the 17-AAG treated group had low structural integrity and high apoptotic nuclei than those of the untreated control, resulting in decrease the embryonic qualities of preimplantation porcine blastocysts. The mRNA expressions of cell cycle-related genes were down-regulated in the 17-AAG treated group compared with control. Also, the expression of the pro-apoptotic gene Bax increased in 17-AAG treated group, whereas expression of the anti-apoptotic gene Bel-XL decreased. However, the expression of ER stress-related genes did not changed by 17-AAG. Cultured pESF cells were treated with or without 17-AAG and used for MIT assay. The results showed that viability of pESF cells were decreased by treatment of 17-AAG ($2{\mu}M$) for 24 hr. These results indicated that 17-AAG decreased cell proliferation and increased cell death. Expression patterns Hsp90 complex genes (Hsp70 and p23), cell cycle-related genes (cdc2 and cdc25c) and apoptosis-related genes (Bax and Bcl-XL) were significantly changed by using RT-PCR analysis. The spliced form of pXbp-1 product (pXbp-1s) was detected in the tunicamycin (TM) treated cells, but it is not detected in 17-AAG treated cells. In conclusion, Hsp90 appears to play a direct role in porcine early embryo developmental competence including structural integrity of blastocysts. Also, these results indicate that Hsp90 is closely associated with cell cycle- and apoptosis-related genes expression in developing porcine embryos.

Outcome and risk factors of pediatric hemato-oncology patients admitted in pediatric intensive care unit (소아 중환자실에 입실한 소아 종양/혈액 질환 환자의 예후 및 위험인자)

  • Kim, Bo Eun;Ha, Eun Ju;Bae, Keun Wook;Kim, Seon Guk;Im, Ho Joon;Seo, Jong Jin;Park, Seong Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.10
    • /
    • pp.1153-1160
    • /
    • 2009
  • Purpose:To evaluate the risk factors for mortality and prognostic factors in pediatric hemato-oncology patients admitted to the pediatric intensive care unit (PICU). Methods:We retrospectively reviewed the medical records of pediatric hemato-oncology patients admitted at the PICU of the Asan Medical Center between September 2005 and July 2008. Patients admitted at the PICU for perioperative or terminal care were excluded. Results:Total 88 patients were analyzed. Overall ICU mortality rate was 34.1%. Mean age at PICU admission was $7.0{\pm}5.7$ years and mean duration of PICU stay was $18.1{\pm}22.2$ days. Hematologic diseases contributed to 77.3% of all the primary diagnoses, and the primary cause of admission was respiratory failure (39.8%). The factors related to increased mortality were C-reactive protein level (P<0.01), ventilation or dialysis requirement (P<0.01), and hematopoietic stem cell transplantation (P<0.05). In all, 3 scoring systems were investigated [Number of Organ System Failures (OSF number), the Pediatric Risk of Mortality III (PRISM III) score, and the Sequential Organ Failure Assessment (SOFA) score]; higher score correlated with worse outcome (P<0.01). The Oncological Pediatric Risk of Mortality (O-PRISM) scores of the 21 patients who had received hematopoietic stem cell transplantation were higher among the non-survivors, but not statistically significant (P=0.203). Conclusion:The PRISM III and SOFA scores obtained within 24 hours of PICU admission were found to be useful as early mortality predictors. The highest OSF number during the PICU stay was closely related to poor outcome.