Purpose The development of the network and mobile industries has induced companies to invest in information systems, leading a new industrial revolution. The Journal of Information Systems, which developed the information system field into a theoretical and practical study in the 1990s, retains a 30-year history of information systems. This study aims to identify academic values and research trends of JIS by analyzing the trends. Design/methodology/approach This study aims to analyze the trend of JIS by compounding various methods, named as TLS mining analysis. TLS mining analysis consists of a series of analysis including Term Frequency-Inverse Document Frequency (TF-IDF) weight model, Latent Dirichlet Allocation (LDA) topic modeling, and a text mining with Semantic Network Analysis. Firstly, keywords are extracted from the research data using the TF-IDF weight model, and after that, topic modeling is performed using the Latent Dirichlet Allocation (LDA) algorithm to identify issue keywords. Findings The current study used the summery service of the published research paper provided by Korea Citation Index to analyze JIS. 714 papers that were published from 2002 to 2012 were divided into two periods: 2002-2011 and 2012-2021. In the first period (2002-2011), the research trend in the information system field had focused on E-business strategies as most of the companies adopted online business models. In the second period (2012-2021), data-based information technology and new industrial revolution technologies such as artificial intelligence, SNS, and mobile had been the main research issues in the information system field. In addition, keywords for improving the JIS citation index were presented.
The Journal of the Convergence on Culture Technology
/
v.9
no.5
/
pp.509-515
/
2023
Despite the continued development of alternative energies, fuel consumption is increasing. In particular, the price of gasoline fluctuates greatly according to fluctuations in international oil prices. Gas stations adjust their gasoline inventory to respond to gasoline price fluctuations. In this study, news datasets is used to analyze the gasoline consumption patterns through fluctuations of the gasoline inventory. First, collecting news datasets with web crawling. Second, summarizing news datasets using KoBART, which summarizes the Korean text datasets. Finally, preprocessing and deriving the fluctuations factors through N-Gram Language Model and TF-IDF. Through this study, it is possible to analyze and predict gasoline consumption patterns.
The Journal of the Convergence on Culture Technology
/
v.10
no.5
/
pp.667-671
/
2024
Professional job training for government officers emphasizes establishing desirable values as public officials and improving professionalism in public service. To provide customized education, some studies are analyzed factors affecting education satisfaction. However, there is a lack of research predicting education satisfaction with educational contents. Therefore, we propose a deep learning-based regression model that predicts government officer education satisfaction with educational contents. We use education information data for government officer. We use one-hot encoding to categorize variables collected in text format, such as education targets, education classifications, and education types. We quantify the education contents stored in text format as TF-IDF. We train our deep learning-based regression model and validate model performance with 10-Fold Cross Validation. Our proposed model showed 99.87% accuracy on test sets. We expect that customized education recommendations based on our model will help provide and improve optimized education content.
Yoon, Young Mi;Kim, Seong Kwang;Kim, Hye Kyeong;Kim, Eun Joo;Jeong, Yuneui
Journal of muscle and joint health
/
v.27
no.3
/
pp.255-267
/
2020
Purpose: The purpose of this study is to compare topics through keywords related to nurses in internet portals and social media Pre coronavirus disease (COVID-19) era and during the COVID-19 era. Methods: For six months before and during the outbreak of COVID-19 in Korea, "nurse" was searched on the internet. For data collection, we implemented web crawlers in programming languages such as Python and collected keywords. The keywords collected were classified into three domains of topic Modeling. Results: The keyword 'nurse' increased by 15% during COVID-19 era. Keywords that ranked high in Term Frequency - Inverse Document Frequency (TF-IDF) values were before COVID-19, such as "nurse" and "C-section". during COVID-19, however, they were not only "nurse" but also "emergency" and "gown" related to pandemics. Conclusion: Various topics were being uploaded into the internet media. Nursing professionals should be interested in the text that is revealed in the internet media and try to continuously identify and improve problems.
Nowadays, various social media platforms are widely spread and people closely use such platforms in daily life. By doing so, social influencers with a large number of subscribers, views, and comments have huge impact in our society. Following this trend, many companies are actively using influencers for marketing purpose to promote their products and services. In this study, we extract the speeches of influencers from videos for game marketing and analyze them using various text mining techniques. In the analysis, we distinguish game videos leading to successful marketing and failed marketing, and we explore and compare the linguistic features of the influencers for successful and failed marketings.
No Kyu Seong ;Jae Hee Lee ;Jong Beom Lee;Poong Hyun Seong
Nuclear Engineering and Technology
/
v.55
no.2
/
pp.421-431
/
2023
Nuclear power plants (NPPs) have technical specifications (Tech Specs) to ensure that the equipment and key operating parameters necessary for the safe operation of the power plant are maintained within limiting conditions for operation (LCO) determined by a safety analysis. The LCO of Tech Specs that identify the lowest functional capability of equipment required for safe operation for a facility must be complied for the safe operation of NPP. There have been previous studies to aid in compliance with LCO relevant to rule-based expert systems; however, there is an obvious limit to expert systems for implementing the rules for many situations related to LCO. Therefore, in this study, we present a retrieval methodology for similar LCO cases in determining whether LCO is met or not met. To reflect the natural language processing of NPP features, a domain dictionary was built, and the optimal term frequency-inverse document frequency variant was selected. The retrieval performance was improved by adding a Boolean retrieval model based on terms related to the LCO in addition to the vector space model. The developed domain dictionary and retrieval methodology are expected to be exceedingly useful in determining whether LCO is met.
As the dependence of technology on the economic structure increases, the importance of National Core Technology is increasing. However, due to the nature of the technology itself, it is difficult to determine the scope of the technology to be protected because the scope of the relation is abstract and information disclosure is limited due to the nature of the National Core Technology. To solve this problem, we propose the most appropriate literature type and method of analysis to distinguish important technologies related to National Core Technology. We conducted a pilot test to apply TF-IDF, and LDA topic modeling, two techniques of text mining analysis for big data analysis, to four types of literature (news, papers, reports, patents) collected with National Core Technology keywords in the field of Display industry. As a result, applying LDA theme modeling to patent data are highly relevant to National Core Technology. Important technologies related to the front and rear industries of displays, including OLEDs and microLEDs, were identified, and the results were visualized as networks to clarify the scope of important technologies associated with National Core Technology. Throughout this study, we have clarified the ambiguity of the scope of association of technologies and overcome the limited information disclosure characteristics of national core technologies.
Journal of Practical Agriculture & Fisheries Research
/
v.22
no.1
/
pp.113-129
/
2020
In this study we examined the topic analysis and correlation analysis by text mining to extract meaningful information or rules from the self introduction letter of freshman at Korea National College of Agriculture and Fisheries in 2020. The analysis items are described in items related to 'academic' and 'in-school activities' during high school. In the text mining results, the keywords of 'academic' items were 'study', 'thought', 'effort', 'problem', 'friend', and the key words of 'in-school activities' were 'activity', 'thought', 'friend', 'club', 'school' in order. As a result of the correlation analysis, the key words of 'thinking', 'studying', 'effort', and 'time' played a central role in the 'academic' item. And the key words of 'in-school activities' were 'thought', 'activity', 'school', 'time', and 'friend'. The results of frequency analysis and association analysis were visualized with word cloud and correlation graphs to make it easier to understand all the results. In the next study, TF-IDF(Term Frequency-Inverse Document Frequency) analysis using 'frequency of keywords' and 'reverse of document frequency' will be performed as a method of extracting key words from a large amount of documents.
Objectives: In recent years, there has been an increased need for a way to extract desired information from multiple medical literatures at once. This study was conducted to confirm the usefulness of unstructured data analysis using previously published medical literatures to search for new indications. Methods: The new indications were searched through text mining, network analysis, and topic modeling analysis using 5,057 articles of atorvastatin, a treatment for hyperlipidemia, from 1990 to 2017. Results: The extracted keywords was 273. In the frequency of text mining and network analysis, the existing indications of atorvastatin were extracted in top level. The novel indications by Term Frequency-Inverse Document Frequency (TF-IDF) were atrial fibrillation, heart failure, breast cancer, rheumatoid arthritis, combined hyperlipidemia, arrhythmias, multiple sclerosis, non-alcoholic fatty liver disease, contrast-induced acute kidney injury and prostate cancer. Conclusions: Unstructured data analysis for discovering new indications from massive medical literature is expected to be used in drug repositioning industries.
In the 2020s, the K-Pop market has been dominated by girl groups over boy groups and the fourth generation over the third generation. This paper presents methods and results on lyric clustering to investigate whether the generation of girl groups has started to change. We collected meta-information data for 1469 songs of 47 groups released from 2013 to 2022 and classified them into lyric information and non-lyric meta-information and quantified them respectively. The lyrics information was preprocessed by applying word-translation frequency vectorization based on previous studies and then selecting only the top vector values. Non-lyric meta-information was preprocessed and applied with One-Hot Encoding to reduce the bias of using only lyric information and show better clustering results. The clustering performance on the preprocessed data is 129%, 45% higher for Spherical K-Means' Silhouette Score and Calinski-Harabasz Score, respectively, compared to Hierarchical Clustering. This paper is expected to contribute to the study of Korean popular song development and girl group lyrics analysis and clustering.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.