• Title/Summary/Keyword: Term Frequency (TF)-Inverse document frequency (IDF)

Search Result 69, Processing Time 0.021 seconds

A Study on the Perception of Metaverse Fashion Using Big Data Analysis

  • Hosun Lim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.1
    • /
    • pp.72-81
    • /
    • 2023
  • As changes in social and economic paradigms are accelerating, and non-contact has become the new normal due to the COVID-19 pandemic, metaverse services that build societies in online activities and virtual reality are spreading rapidly. This study analyzes the perception and trend of metaverse fashion using big data. TEXTOM was used to extract metaverse and fashion-related words from Naver and Google and analyze their frequency and importance. Additionally, structural equivalence analysis based on the derived main words was conducted to identify the perception and trend of metaverse fashion. The following results were obtained: First, term frequency(TF) analysis revealed the most frequently appearing words were "metaverse," "fashion," "virtual," "brand," "platform," "digital," "world," "Zepeto," "company," and "game." After analyzing TF-inverse document frequency(TF-IDF), "virtual" was the most important, followed by "brand," "platform," "Zepeto," "digital," "world," "industry," "game," "fashion show," and "industry." "Metaverse" and "fashion" were found to have a high TF but low TF-IDF. Further, words such as "virtual," "brand," "platform," "Zepeto," and "digital" had a higher TF-IDF ranking than TF, indicating that they had high importance in the text. Second, convergence of iterated correlations analysis using UNICET revealed four clusters, classified as "virtual world," "metaverse distribution platform," "fashion contents technology investment," and "metaverse fashion week." Fashion brands are hosting virtual fashion shows and stores on metaverse platforms where the virtual and real worlds coexist, and investment in developing metaverse-related technologies is under way.

An Analysis of Indications of Meridians in DongUiBoGam Using Data Mining (데이터마이닝을 이용한 동의보감에서 경락의 주치특성 분석)

  • Chae, Younbyoung;Ryu, Yeonhee;Jung, Won-Mo
    • Korean Journal of Acupuncture
    • /
    • v.36 no.4
    • /
    • pp.292-299
    • /
    • 2019
  • Objectives : DongUiBoGam is one of the representative medical literatures in Korea. We used text mining methods and analyzed the characteristics of the indications of each meridian in the second chapter of DongUiBoGam, WaeHyeong, which addresses external body elements. We also visualized the relationships between the meridians and the disease sites. Methods : Using the term frequency-inverse document frequency (TF-IDF) method, we quantified values regarding the indications of each meridian according to the frequency of the occurrences of 14 meridians and 14 disease sites. The spatial patterns of the indications of each meridian were visualized on a human body template according to the TF-IDF values. Using hierarchical clustering methods, twelve meridians were clustered into four groups based on the TF-IDF distributions of each meridian. Results : TF-IDF values of each meridian showed different constellation patterns at different disease sites. The spatial patterns of the indications of each meridian were similar to the route of the corresponding meridian. Conclusions : The present study identified spatial patterns between meridians and disease sites. These findings suggest that the constellations of the indications of meridians are primarily associated with the lines of the meridian system. We strongly believe that these findings will further the current understanding of indications of acupoints and meridians.

An Ensemble Approach for Cyber Bullying Text messages and Images

  • Zarapala Sunitha Bai;Sreelatha Malempati
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.59-66
    • /
    • 2023
  • Text mining (TM) is most widely used to find patterns from various text documents. Cyber-bullying is the term that is used to abuse a person online or offline platform. Nowadays cyber-bullying becomes more dangerous to people who are using social networking sites (SNS). Cyber-bullying is of many types such as text messaging, morphed images, morphed videos, etc. It is a very difficult task to prevent this type of abuse of the person in online SNS. Finding accurate text mining patterns gives better results in detecting cyber-bullying on any platform. Cyber-bullying is developed with the online SNS to send defamatory statements or orally bully other persons or by using the online platform to abuse in front of SNS users. Deep Learning (DL) is one of the significant domains which are used to extract and learn the quality features dynamically from the low-level text inclusions. In this scenario, Convolutional neural networks (CNN) are used for training the text data, images, and videos. CNN is a very powerful approach to training on these types of data and achieved better text classification. In this paper, an Ensemble model is introduced with the integration of Term Frequency (TF)-Inverse document frequency (IDF) and Deep Neural Network (DNN) with advanced feature-extracting techniques to classify the bullying text, images, and videos. The proposed approach also focused on reducing the training time and memory usage which helps the classification improvement.

Analysis of Success Factors of Electric Scooter Sharing Service Using User Review Text Mining

  • Kyoung-ae Seo;Jung Seung Lee
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.2
    • /
    • pp.19-30
    • /
    • 2023
  • This study aims to analyze service improvement and success factors of electric scooter sharing service companies by using text mining after collecting reviews of shared electric scooter service applications among various models of sharing economy. In this study, the factors of satisfaction and dissatisfaction of service users were identified using the term frequency inverse document frequency (TF-IDF) technique, and topics for each keyword were extracted using the Latent Dirichlet Allocation (LDA) Topic Modeling technique. According to the analysis results, the main topics were entertainment, safety, service area, application complaints, use complaints, convenience, and mobility. Using the analysis results of this study, employees and researchers of electric scooter sharing service companies will be able to contribute to the improvement and success of related services.

Research Paper Classification Scheme based on Word Embedding (워드 임베딩 기반 연구 논문 분류 기법)

  • Dipto, Biswas;Gil, Joon-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.494-497
    • /
    • 2021
  • 텍스트 분류(text classification)는 원시 텍스트 데이터로부터 정보를 추출할 수 있는 기술에 기반하여 많은 양의 텍스트 데이터를 관심 영역으로 분류하는 것으로 최근에 각광을 받고 있다. 본 논문에서는 워드 임베딩(word embedding) 기법을 이용하여 특정 분야의 연구 논문을 분류하고 추천하는 기법을 제안한다. 워드 임베딩으로 CBOW(Continuous Bag-of-Word)와 Sg(Skip-gram)를 연구 논문의 분류에 적용하고 기존 방식인 TF-IDF(Term Frequency-Inverse Document Frequency)와 성능을 비교 분석한다. 성능 평가 결과는 워드 임베딩에 기반한 연구 논문 분류 기법이 TF-IDF에 기반한 연구 논문 분류 기법보다 좋은 성능을 가진다는 것을 나타낸다.

A Study on Optimization of Support Vector Machine Classifier for Word Sense Disambiguation (단어 중의성 해소를 위한 SVM 분류기 최적화에 관한 연구)

  • Lee, Yong-Gu
    • Journal of Information Management
    • /
    • v.42 no.2
    • /
    • pp.193-210
    • /
    • 2011
  • The study was applied to context window sizes and weighting method to obtain the best performance of word sense disambiguation using support vector machine. The context window sizes were used to a 3-word, sentence, 50-bytes, and document window around the targeted word. The weighting methods were used to Binary, Term Frequency(TF), TF ${\times}$ Inverse Document Frequency(IDF), and Log TF ${\times}$ IDF. As a result, the performance of 50-bytes in the context window size was best. The Binary weighting method showed the best performance.

Text Mining of Wood Science Research Published in Korean and Japanese Journals

  • Eun-Suk JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.458-469
    • /
    • 2023
  • Text mining techniques provide valuable insights into research information across various fields. In this study, text mining was used to identify research trends in wood science from 2012 to 2022, with a focus on representative journals published in Korea and Japan. Abstracts from Journal of the Korean Wood Science and Technology (JKWST, 785 articles) and Journal of Wood Science (JWS, 812 articles) obtained from the SCOPUS database were analyzed in terms of the word frequency (specifically, term frequency-inverse document frequency) and co-occurrence network analysis. Both journals showed a significant occurrence of words related to the physical and mechanical properties of wood. Furthermore, words related to wood species native to each country and their respective timber industries frequently appeared in both journals. CLT was a common keyword in engineering wood materials in Korea and Japan. In addition, the keywords "MDF," "MUF," and "GFRP" were ranked in the top 50 in Korea. Research on wood anatomy was inferred to be more active in Japan than in Korea. Co-occurrence network analysis showed that words related to the physical and structural characteristics of wood were organically related to wood materials.

Classifying Sub-Categories of Apartment Defect Repair Tasks: A Machine Learning Approach (아파트 하자 보수 시설공사 세부공종 머신러닝 분류 시스템에 관한 연구)

  • Kim, Eunhye;Ji, HongGeun;Kim, Jina;Park, Eunil;Ohm, Jay Y.
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.359-366
    • /
    • 2021
  • A number of construction companies in Korea invest considerable human and financial resources to construct a system for managing apartment defect data and for categorizing repair tasks. Thus, this study proposes machine learning models to automatically classify defect complaint text-data into one of the sub categories of 'finishing work' (i.e., one of the defect repair tasks). In the proposed models, we employed two word representation methods (Bag-of-words, Term Frequency-Inverse Document Frequency (TF-IDF)) and two machine learning classifiers (Support Vector Machine, Random Forest). In particular, we conducted both binary- and multi- classification tasks to classify 9 sub categories of finishing work: home appliance installation work, paperwork, painting work, plastering work, interior masonry work, plaster finishing work, indoor furniture installation work, kitchen facility installation work, and tiling work. The machine learning classifiers using the TF-IDF representation method and Random Forest classification achieved more than 90% accuracy, precision, recall, and F1 score. We shed light on the possibility of constructing automated defect classification systems based on the proposed machine learning models.

Analysis of User Reviews of Running Applications Using Text Mining: Focusing on Nike Run Club and Runkeeper (텍스트마이닝을 활용한 러닝 어플리케이션 사용자 리뷰 분석: Nike Run Club과 Runkeeper를 중심으로)

  • Gimun Ryu;Ilgwang Kim
    • Journal of Industrial Convergence
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2024
  • The purpose of this study was to analyze user reviews of running applications using text mining. This study used user reviews of Nike Run Club and Runkeeper in the Google Play Store using the selenium package of python3 as the analysis data, and separated the morphemes by leaving only Korean nouns through the OKT analyzer. After morpheme separation, we created a rankNL dictionary to remove stopwords. To analyze the data, we used TF, TF-IDF and LDA topic modeling in text mining. The results of this study are as follows. First, the keywords 'record', 'app', and 'workout' were identified as the top keywords in the user reviews of Nike Run Club and Runkeeper applications, and there were differences in the rankings of TF and TF-IDF. Second, the LDA topic modeling of Nike Run Club identified the topics of 'basic items', 'additional features', 'errors', and 'location-based data', and the topics of Runkeeper identified the topics of 'errors', 'voice function', 'running data', 'benefits', and 'motivation'. Based on the results, it is recommended that errors and improvements should be made to contribute to the competitiveness of the application.

Automated Analysis Approach for the Detection of High Survivable Ransomware

  • Ahmed, Yahye Abukar;Kocer, Baris;Al-rimy, Bander Ali Saleh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2236-2257
    • /
    • 2020
  • Ransomware is malicious software that encrypts the user-related files and data and holds them to ransom. Such attacks have become one of the serious threats to cyberspace. The avoidance techniques that ransomware employs such as obfuscation and/or packing makes it difficult to analyze such programs statically. Although many ransomware detection studies have been conducted, they are limited to a small portion of the attack's characteristics. To this end, this paper proposed a framework for the behavioral-based dynamic analysis of high survivable ransomware (HSR) with integrated valuable feature sets. Term Frequency-Inverse document frequency (TF-IDF) was employed to select the most useful features from the analyzed samples. Support Vector Machine (SVM) and Artificial Neural Network (ANN) were utilized to develop and implement a machine learning-based detection model able to recognize certain behavioral traits of high survivable ransomware attacks. Experimental evaluation indicates that the proposed framework achieved an area under the ROC curve of 0.987 and a few false positive rates 0.007. The experimental results indicate that the proposed framework can detect high survivable ransomware in the early stage accurately.