• 제목/요약/키워드: Terephthalic Acid

검색결과 73건 처리시간 0.019초

석유화학공장 규모 최적화를 위한 변수 선정 (Selecting Decision Variable for a Plant-wide Optimization)

  • 정창현;장경수;한종훈
    • Korean Chemical Engineering Research
    • /
    • 제46권4호
    • /
    • pp.714-721
    • /
    • 2008
  • 에너지의 소비가 큰 화학공장은 공정 자체가 가지는 비선형성, 불안정성등과 여러 가지 외란으로 인한 최적의 상태로 운전되고 있지 못하다. 이를 개선하기 위해 공장 전체 최적화를 수행하게 된다. 공장 전체를 대상으로 하는 최적화에는 경제적으로 영향을 주는 조절 변수가 많기 때문에 조절 변수의 개수를 최적으로 선정하는 문제는 중요하다. 경제적으로 영향을 주는 조절 변수를 모두 사용하여 최적화를 할 경우 최적화하여 나온 결과를 운전 조건에 반영할 때 많은 운전조건이 바뀌게 되므로 운전 조건의 변화에 따른 비용이 증가하게 된다.본 연구에서는 TPA(Terephthalic Acid) 공정을 대상으로 공장 규모 최적화를 하기 위하여 운전 비용에 영향을 주는 최적화 조절 변수를 최적으로 선정하기 위한 방법을 제시하였다. 즉, 모델을 만든 후 운전비용에 영향을 주는 조절 변수의 정도를 민감도 분석을 통해 알아 봄으로써 최적화할 때 운전 비용에 영향이 큰 변수들만 사용하는 것이다. TPA공정에서는 본 연구에서 제시한 방법에 의해 3개의 조절 변수를 선정하였고 선정된 변수로 최적화 한 결과 추가적인 설비 투자나 물리적인 개조 등이 없이 연간 약 3억 5천 만원의 에너지 비용 절감이 기대 된다.

Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals

  • Joyce Mudondo;Hoe-Suk Lee;Yunhee Jeong;Tae Hee Kim;Seungmi Kim;Bong Hyun Sung;See-Hyoung Park;Kyungmoon Park;Hyun Gil Cha;Young Joo Yeon;Hee Taek Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.1-14
    • /
    • 2023
  • Polyethylene terephthalate (PET) is a plastic material commonly applied to beverage packaging used in everyday life. Owing to PET's versatility and ease of use, its consumption has continuously increased, resulting in considerable waste generation. Several physical and chemical recycling processes have been developed to address this problem. Recently, biological upcycling is being actively studied and has come to be regarded as a powerful technology for overcoming the economic issues associated with conventional recycling methods. For upcycling, PET should be degraded into small molecules, such as terephthalic acid and ethylene glycol, which are utilized as substrates for bioconversion, through various degradation processes, including gasification, pyrolysis, and chemical/biological depolymerization. Furthermore, biological upcycling methods have been applied to biosynthesize value-added chemicals, such as adipic acid, muconic acid, catechol, vanillin, and glycolic acid. In this review, we introduce and discuss various degradation methods that yield substrates for bioconversion and biological upcycling processes to produce value-added biochemicals. These technologies encourage a circular economy, which reduces the amount of waste released into the environment.

Synthesis, Crystal Structure and Characterization of Cu(II) and Cd(II) Coordination Compounds Based on Ligand 2-(3-(Pyridin-2-yl)-1H-pyrazol-1-yl)acetic Acid

  • Zhang, Ya-Jun;Wang, Cui-Juan;Mao, Kai-Li;Liu, Xiao-Lei;Huang, Shuai;Tong, Yan;Zhou, Xian-Li
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.2086-2092
    • /
    • 2014
  • Two novel coordination compounds $[Cu_2(pypya)_3(H_2O)_2]{\cdot}Cl{\cdot}(H_2O)_5$ (1) and $\{[Cd(pypya)(ta)_{1/2}]{\cdot}H_2O\}_n$ (2) (Hpypya=2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)acetic acid, $H_2ta$=terephthalic acid) were synthesized and characterized by single X-ray diffraction. Structure determination reveals that complex 1 and complex 2 crystallize in the triclinic system, with the P-1 space group. The asymmetric unit of 1 contains two Cu(II) ions, and their coordination modes are different. These units of complex 1 are linked together via hydrogen bonds and ${\pi}-{\pi}$ interactions, and the 3D structure of complex 1 was formed. Complex 2, a mononuclear Cd(II) coordination compound, has a 2D structure which was constructed via coordination bonds. TGA and fluorescence spectra analysis of complex 1 and complex 2 have also been studied. In addition, the geometry parameters of complex 1 have been optimized with the B3LYP method of density functional theory (DFT) to explain its coordination behavior. The electronic properties of the complex 1 and ligand Hpypya have been investigated based on the nature bond orbital (NBO) analysis at the B3LYP level of theory. The result verifies that the synergistic effect have occurred in the compound.

Quantitative Comparison of the Photocatalytic Efficiency of TiO2 Nanotube Film and TiO2 Powder

  • Jang, Jun-Won;Park, Sung Jik;Park, Jae-Woo
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권2호
    • /
    • pp.8-14
    • /
    • 2016
  • We compared the plausible reaction mechanism and quantitative efficiency of highly self-organized TiO2 nanotube (ntTiO2) film with TiO2 powder. Film was fabricated by electrochemical potentiostatic anodization of titanium thin film in an ethylene-glycol electrolyte solution containing 0.3 wt% NH4F and 2 vol% deionized water. Nanotubes with a pore size of 80-100 nm were formed by anodization at 60 V for 3 h. Humic acid (HA) was degraded through photocatalytic degradation using the ntTiO2 film. Pseudo first-order rate constants for 0.3 g of ntTiO2, 0.3 g TiO2 powder, and 1 g TiO2 powder were 0.081 min−1, 0.003 min−1, and 0.044 min−1, respectively. HA adsorption on the ntTiO2 film was minimal while adsorption on the TiO2 powder was about 20% based on thermogravimetric analysis. Approximately five-fold more normalized OH radicals were generated by the ntTiO2 film than the TiO2 powder. These quantitative findings explain why ntTiO2 film showed superior photocatalytic performance to TiO2 powder.

Analysis of the Esterification Process for Poly(ethylene terephthalate)

  • Ahn, Young-Cheol;Park, Soo-Myung
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.399-409
    • /
    • 2003
  • The first esterification reactor in the continuous polymerization of poly(ethylene terephthalate) has been analyzed by solving the material balances for the two-phase system with respect to the solubility of terephthalic acid. The Newton-Raphson method was used to solve the material balance equations instead of the Simplex method that is frequently used for finding a minimum point of a residual rather than a solution of an equation. A solution for the material balance equations, with the constraint of non-zero liquid phase fraction, could not be obtained with the solubility data of Yamada et al., but could be obtained with solubilities over a minimum value that is larger than their data. Thus, the solubility data of Yamada et al. are considered to be too small. On the other hand, the solubility data of Baranova and Kremer are so large that they gave a solution with the liquid phase only. Based on our results, several typical solubility curves satisfying the constraint of a non-zero liquid phase fraction are suggested in this study; we studied the reaction characteristics of the system using these curves. A higher temperature and a lower pressure are preferred for reducing the content of diethylene glycol.

폴리에스터 폐자원의 화학적 재활용기술 (Chemical Recycling Technology from Polyester Wastes)

  • 한명완;강경석;송재경
    • Elastomers and Composites
    • /
    • 제47권2호
    • /
    • pp.96-103
    • /
    • 2012
  • 본 논문에서는 PET를 재활용하는 최근의 기술들을 소개한다. PET가 광범위하게 사용되고 또한 썩지 않기 때문에 환경 문제를 야기하고 또한 이 물질의 폐기 및 소각은 경제적 손실이기도 하다. PET의 화학적 재활용은 이 폐기물들을 유용한 원료물질로 전환하여 PET를 재생산하는 것이 가능하게 한다. PET의 화학적 재활용은 글리콜에 의한 글리콜리시스, 메탄올에 의한 메탄올리시스, 물에 의한 가수분해 등의 반응에 의한 PET 고분자 사슬의 분해가 이루어지고, 분리정제 과정을 거쳐 MEG, DMT, PTA와 같은 단량체 혹은 폴리에스터 올리고머로 만들어진다. 이 물질들은 폴리에스터를 합성하는 데 사용될 수 있다.

Synthesis and Characterization of H3PO4 Doped Poly(benzimidazole-co-benzoxazole) Membranes for High Temperature Polymer Electrolyte Fuel Cells

  • Lee, Hye-Jin;Lee, Dong-Hoon;Henkensmeier, Dirk;Jang, Jong-Hyun;Cho, Eun-Ae;Kim, Hyoung-Juhn;Kim, Hwa-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3279-3284
    • /
    • 2012
  • Poly(benzimidazole-co-benzoxazole)s (PBI-co-PBO) are synthesized by polycondensation reaction with 3,3'-diaminobenzidine, terephthalic acid and 3,3'-dihydroxybenzidine or 4,6-diaminoresorcinol in polyphosphoric acid (PPA). All polymer membranes are prepared by the direct casting method (in-situ fabrication). The introduction of benzoxazole units (BO units) into a polymer backbone lowers the basic property and $H_3PO_4$ doping level of the copolymer membranes, resulting in the improvement of mechanical strength. The proton conductivity of $H_3PO_4$ doped PBI-co-PBO membranes decrease as a result of adding amounts of BO units. The maximum tensile strength reaches 4.1 MPa with a 10% molar ratio of BO units in the copolymer. As a result, the $H_3PO_4$ doped PBI-co-PBO membranes could be utilized as alternative proton exchange membranes in high temperature polymer electrolyte fuel cells.

대체 외부탄소원으로서의 TPA 생산부산물 특성 및 현장적용성 평가 (Assessment of Characteristics and Field Applicability with TPA By-Product as Alternative External Carbon Source)

  • 정인철;전성규;성낙창
    • 대한환경공학회지
    • /
    • 제28권5호
    • /
    • pp.480-486
    • /
    • 2006
  • B시 S하수처리장에서 화학침전 공정에서 MLE 공정으로 공법을 변경하였으며, 생물학적으로 탈질시 부족한 탄소원을 보충하기 위해 외부탄소원이 요구되었다. 본 연구에서는 약 4.7%의 아세트산을 포함하는 TPA(Terephthalic Acid) 생산부산물의 대체탄소원으로 적용 가능성을 평가하기 위해 NUR(Nitrate Uptake Rate) 및 OUR(Oxygen Uptake Rate) 실험과 현장 적용실험을 수행하였다. 실험 결과 TPA 생산 부산물은 일반 상용 외부탄소원으로 널리 쓰이는 메탄올보다 빠른 순응특성을 나타내었고 비탈질율이 $8.24mg{NO_3}^--N/gVSS/hr$, 단위 질산성 질소 제거당 COD 소모비는 $3.70COD_{Cr}/g\;NO_3$, RBDCOD 함량 99.4%로 나타났다. S하수처리장에 대한 TPA 생산부산물 현장 적용 실험을 통해 안정적인 영양염류 제거효율을 나타내었으며 방류수 T-N 농도가 8.2 mg/L로 생물학적 탈질에 요구되는 탄소원을 보충할 수 있는 대체탄소원으로 적합하다고 판단되었다.

TiO2 광촉매 산화 반응에서 생성된 수산기 라디칼 분석 방법 (Analytical Methods of Hydroxyl Radical Produced by TiO2 Photo-catalytic Oxidation)

  • 김성희;이상우;김정진;김순오
    • 한국광물학회지
    • /
    • 제28권3호
    • /
    • pp.245-253
    • /
    • 2015
  • $TiO_2$ 광촉매 산화 공정의 효율은 수산기 라디칼의 생성량에 따라 크게 의존한다. 따라서 생성되는 수산기 라디칼의 정확한 정량이 공정을 평가하는데 필수적이다. 하지만 아직까지 이러한 수산기 라디칼 정량법이 마련되지 못했다. 이에 본 연구는 $TiO_2$ 광촉매 산화 반응에서 생성되는 수산기 라디칼을 정량화하기 위한 기존 분석법들을 비교하고, 기존 분석법들의 단점을 극복할 수 있는 새로운 방법을 제안하고자 수행되었다. $TiO_2$ 광촉매 산화 반응을 모사하기 위하여, 표준 $TiO_2$ 광촉매로서 널리 이용되고 있는 Degussa P25를 사용하였으며, 투여량은 0.05 g/L이었다. 그리고 UVC 수은 저압램프(11 W, $2,975mW/cm^2$)를 광원으로 이용하였다. 연구결과, 기존에 많이 활용되고 있는 요오드화칼륨(KI)/UV-vis 분광분석법과 테레프탈산(TPA)/형광 분광분석법은 각각 요오드이온(I-)과 테레프탈산을 공정 중 생성된 수산기 라디칼과 반응시켜 발생하는 삼중요오드이온($I_3{^-}$)과 2-하이드록시 테레프탈산을 검출하여 수산기 라디칼의 생성여부만을 확인할 수 있는 정성적인 분석법들이었다. 하지만 본 연구에서 테레프탈산 방법을 고성능 액체 크로마토그래프(HPLC) 분석법과 연계하였을 때 수산기 라디칼의 정량화가 가능하였다. 이렇게 새롭게 개발된 TPA/HPLC 분석법을 이용하여 측정한 결과, 본 연구의 실험 조건에서 8시간의 광촉매 산화 공정에 의해서 0.013 M의 수산기 라디칼이 생성되는 것을 확인하였다. 본 연구에서 제안하는 수산기 라디칼 정량법은 광촉매 산화 공정의 성능을 평가하는데 기여할 것으로 기대된다.

Ionic Conductivities of the LiCF$_3$SO$_3$Complexes with Liquid Crystalline Aromatic Polyesters Having Oligo(oxyethylene) Pendants

  • Lee, Jun-Woo;Joo, Sung-Hoon;Jin, Jung-Il
    • Macromolecular Research
    • /
    • 제12권2호
    • /
    • pp.195-205
    • /
    • 2004
  • We have synthesized new aromatic polyesters (DiPEG-HQ and DiPEG-BP) by condensation polymerization of a terephthalic acid derivative bearing a pendant oligo(oxyethylene) (DP = 7, MW = 350), which has a methoxy terminal group, and two different aromatic diols, hydroquinone and 4,4'-biphenoI. The synthesized polymers were characterized by differential scanning calorimetry (DSC), polarizing microscopy, and X-ray diffractometry for their liquid crystallinity (LC), thermal transitions, and structural morphologies in mesophases. The morphology of the LC phases depends strongly on the length of the rigid backbone repeating unit. The DiPEG-BP polymer having a longer repeating unit exhibits both layered and nematic structures before isotropization, whereas the DiPEG-HQ polymer having a shorter repeating unit shows only the layered structure in the mesophase. We found that the layer spacing for DiPEG-HQ is larger than that for DiPEG-BP. Both polymers easily form complexes with LiCF$_3$SO$_3$; we studied this complex formation by FT-IR spectroscopy. The layer spacing of the polymer-electrolyte composites increases upon increasing the amount of the lithium salt. The polymer/salt electrolyte mixtures we investigated at molar ratios of EO:salt in the range of 5-20 exhibit electrical conductivity values at 40$^{\circ}C$ of 2.4${\times}$10$\^$5/ and 1.1${\times}$10$\^$-5/ S/cm for DiPEG-HQ/LiCF$_3$SO$_3$ and DiPEG-BP/LiCF$_3$SO$_3$, respectively. At 80 $^{\circ}C$, these values are higher: 4.6${\times}$10$\^$-3/ and 1.1${\times}$10$\^$-4/ S/cm, respectively. The activation energy of conductivity depends strongly on the salt concentration.