• Title/Summary/Keyword: Terephthalic Acid

Search Result 73, Processing Time 0.026 seconds

A Study on Removal of Color in Dyeing Wastewater by Ozone Oxidation (오존산화에 의한 염색체수의 색도 제거에 관한 연구)

  • 정순형;최준호
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • This study was conducted to remove the color in dyeing wastewater by ozone oxidation process, and the results were summarized as follows ; The 18.3% of BOD and 56.3% TOC were removed as decreasing with pH 1 in dyeing wastewater, containing the polyester reducing process. It showed that terephthalic acid was precipitated at low pH. The color of dyeing wastewater was removed by the first order reaction, and the reaction rate constants at pH 3, 7, 12 were investigated $0.234{\;}min^{-1},{\;}0.215{\;}min^{-1}{\;}and{\;}0.201{\;}min^{-1}$ respectively. It showed that color was more effectively removed with direct reaction of ozone than radical reaction(non-direct reaction). As increasing of the water temperature, the reaction rate constants were increased slightly. It indicated that activity of ozone was improved at high water temperature.

Synthesis and Characterization of Poly(trimethylene terephthalate) via TPA Process Using Titanium Catalyst

  • Kim, Kap-Jin;Park, Jung-Il;Pio Sifuentes;Lee, Jong-Soon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.92-92
    • /
    • 2003
  • poly(trimethylene terephthalate) (PTT) was synthesized via condensation polymerization using different molar ratios of 1,3-propane diol (PDO)/terephthalic acid (TPA) in the presence of tetraisopropyl titanate (TiPT) as a polyesterifi-cation catalyst. The effect of reaction conditions on the characteristics of as-polymerized PTT was investigated.

  • PDF

Ag-modified BiOX (X=Cl, Br and I) Plates for Photocatalytic Dye Removal

  • Lee, Seung-Won;Choe, Yeong-In;Lee, Ju-Heon;Park, Yo-Han;Son, Yeong-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.424.2-424.2
    • /
    • 2014
  • Ag-modified BiOX (X=Cl, Br and I) nanoplates were synthesized by an ion-exchange reaction. We examined the fundamental properties by scanning electron microscopy (SEM), electron transmission microscopy (TEM), X-ray diffraction, UV-visible absorption, Fourier-transform infrared and photoluminescence spectroscopy. The adsorption and photocatalytic performances of the catalysts were tested with dyes under UV and visible light. A chemical scavenger method was employed to test the roles of active species (${\cdot}OH$, ${\cdot}O2-$ and h+) and understand photodegradation mechanism. Photoluminescence spectroscopy was used to examine ${\cdot}OH$ radical formation using terephthalic acid during photoirradiation.

  • PDF

Interchange Reaction Kinetics and Sequence Distribution of Liquid Crystalline Poly(ethylene terephthalate-co-2(3)-chloro-1,4-phenylene terephthalate)

  • Rhee, Do-Mook;Ha, Wan-Shik;Youk, Ji-Ho;Yoo, Dong-Il
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.86-91
    • /
    • 2001
  • Liquid crystalline (LC) poly(ethylene terephthalate-co-2(3)-chloro-1,4-phenylene terephthalate) [copoly(ET/CPT)] was prepared using poly(ethylene terephthalate) (PET) as a flexible spacer, terephthalic acid (TPA), and chlorohydroquinone diacetate (CHQDA). All reactions involved in the copolymerization were investigated using some model compounds: TAP was used for acidolysis, diphenylethyl terephthalate (DPET) for interchange reaction between PET chains, and 야-o-chlorophenyl terephthalate (DOCT) and di-m-chlorophenyl terephthalate (DMCT) for interchange reaction between PET and rigid rodlike segments. Activation energies obtained for the acidolysis of PET with TPA and for interchange reaction of PET with DPET, DOCT, and DMCT were 19.8 kcal/mol, 26.5 kcal/mole, and 45.9 kcal/mole, respectively. This result supports that the copolymerization proceeds through the acidolysis of PET with TPA first and subsequent polycondensation between carboxyl end group and CHQDA or acetyl end group, which is formed from the reaction of CHQDA and TPA. Also, it was found that ester-interchange reaction can be influenced by the steric hindrance. Copoly(ET/CPT)s obtained has ethylene acetate end groups formed from acetic acid hydroxy ethylene end groups and showed almost the random sequence distribution for all compositions.

  • PDF

Dyeing Properties of CDP Fiber(III) - Dyeing and Solvent Wicking and Physical Properties of Micro CDP Fiber - (CDP 섬유의 염색성(III) -극세 CDP섬유의 염색성, Solvent wicking성 및 물성-)

  • Kim, Young-Hee;Jeong, Dong-Seok;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.17 no.5 s.84
    • /
    • pp.1-12
    • /
    • 2005
  • Polyester fibers can be modified into cationic dyeable polyester fibers(CDP) by the copolymerization of terephthalic acid and 5-sodium sulphoisophthalic acid with ethylene glycol. The advantage of CDP on most cationic dyes is the conspicuous brilliance due to a narrow steep absorption band and the wash fastness and etc. Weight reduction by alkali hydrolysis, dyeing and solvent wicking properties of fabrics with cationic dyes, and change of fine structure were investigated. To obtain optimum splitting process parameters for dyeing and physical properties of micro CDP fiber, splitting method under various conditions was carried out. By means of SEM, it was confirmed that the splitting process of the micro CDP fiber be achieved at the weight reduction. A comparatively greater quantity of dye is necessary to dye microfiber than conventional fiber. The fastness and solvent wicking of regular CDP fiber is higher than that of micro CDP fiber.

Noble Aromatic Poly(amide-imide)s Derived from 1,2-Bis(4-trimellitimidophenoxy)benzene (1,2-Bis(4-trimellitimidophenoxy)benzene으로 부터 유도된 신규 방향족 폴리아미드이미드)

  • Jeong, Hwa-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • A series of noble poly(amide-imide)s and copoly(amide-imide)s bearing 1,2-bis(4-phenoxy)benzene units were synthesized by the direct polycondensation of 1,2-bis(4-trimellitimidophenoxy)benzene[1,2-PTPB] with a combination of commercially available aromatic diamines and diacids such as m-phenylene diamine, p-phenylene diamine(PPD), isophthalic acid and terephthalic acid(TA) in N-methyl-2-pyrrolidone(NMP) using triphenyl phosphite and pyridine as a condensing agent in the presence of dehydrating agent ($CaCl_2$). The resulting polymers had inherent viscosities in the range of 0.37~0.78 dL/g and most of them were soluble m common organic solvents including NMP, dimethylacetamide, dimethylsulfoxide, dimethylformamide, and m-cresol. Wide-angle X-ray diffractograms revealed that the copoly(amide-imide) derived from PPD with mixed acids of 1,2-BTPB and TA, showed crystalline nature, whereas all of the other polymers were found to be amorphous. The glass transition temperatures of the polymers occurred over the temperature range of $270{\sim}323^{\circ}C$ in their differential scanning calorimetry curves and their 10% weight loss temperature, determined by thermogravimetric analysis in air and nitrogen atmosphere, were in the range $465{\sim}535^{\circ}C$, $500{\sim}550^{\circ}C$, respectively, indicating their good thermal stability.

Effects of Biphenylene Structure on the Properties of Liquid Crystalline Polymer (비페닐렌구조가 액정중합체의 성질에 미치는 영향)

  • Yug, Gyeong-Chang;Shin, Dae-Yewn;Shin, Hong-Chul;Kim, Wan-Young
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.280-287
    • /
    • 1992
  • Aromatic liquid crystalline polyesters were synthesized from terephthalic acid(TPA), biphenyl dicarboxylic acid(BPA) and hydroquinone(HQ) by solution polymerization. Effects of TPA/BPA ratio(by mole %) on the thermal properties, thermal stability and textures of mesophases were investigated with DSC, TGA, cross-polarized microscopy and X-ray diffractometer. The synthesized polymers in this study were thermotropic and showed nematic textures. Melting temperature($T_m$) and isotropization temperature($T_i$) of polymer increased and thermal stabilities of polymer were improved with the content of BPA. Most of the polymers in this study had crystallinity more than 30%.

  • PDF

Syntheses, Crystal Structures, and Spectral Properties of Two Coordination Compounds Based on 1,2-Bis(benzimidazolyl)benzene

  • Meng, Fa-Yan;Jiang, Bing-Li;Lin, Cui-Wu;Wang, Li;Tan, Xiao-He
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.1017-1021
    • /
    • 2011
  • Two new benzimidazolyl-containing complexes have been synthesized by reactions of $Cu^{II}$ salts and 1,2-bis(benzimidazolyl) benzene ($H_2bbbz$) with two different dicarboxylate ligands. When phthalate acid ($H_2pt$) was employed as secondary ligand, a 0D molecular complex Cu$(H_2bbbz)(pt){\cdot}(H_2pt)$ (1)was furnished and when the secondary ligand was instead by a linear bridging ligand of terephthalic acid ($H_2tp$) a 1D zipper-like coordination polymer $[Cu(H_2bbbz)(tp){\cdot}2(C_2H_5OH){\cdot}H_2O]_n$ (2) was obtained, suggesting the structure-direction effect of the secondary dicarbxylate ligand. The preliminary investigation on the spectral properties of the complexes was also presented.

Determination of Eu(III) by Fluorescence Spectrometry (형광분광법에 의한 Eu(Ⅲ)의 정량)

  • Lee, Sang Hak;Han, Jong Hwan;Choi, Sang Seob
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.3
    • /
    • pp.285-291
    • /
    • 1998
  • Methods to determine EU(Ⅲ) ion in aqueous solution by fluorescence spectrometry based upon the ligand sensitized fluorescence of Eu(Ⅲ)-terephthalic acid (TPA) complex ion have been studied. The effects of excitation wavelength, pH, concentration of TPA and emission wavelength on the fluorescence intensity were investigated. The fluorescence intensity of the Eu(Ⅲ) complex ion was further increased with addition of trioctylphosphine oxide (TOPO). In this case Triton X-100 was used to dissolve TOPO in aqueous solution. The calibration curve for Eu(Ⅲ) was linear over the range from $1.0{\times}10^{-6}M\;to\;4.0{\times}10^{-4}M$ and the detection limit was $1.0{\times}10^{-6}M$ under the experimental conditions of 256 nm, 5.6, $3.5{\times}10^{-4}$M$ and 615 nm for excitation wavelength, pH, concentration of TPA and emission wavelength, respectively. When TOPO was added to the Eu(Ⅲ)-TPA system, the concentration range of linear response and the detection limit were $1.0 {\times}10^{-9}M\;to\;1.0{\times}10^{-4}M,\;1.0{\times}10^{-7}M,$ respectively under the experimental conditions of 284 nm, 4.4 and $1.0{\times} 10^{-4}M$ for excitation wavelength, pH and concentration of TOPO, respectively. Effects of interferences from various cations for the determination of Eu(Ⅲ) ion were also investigated.

  • PDF

Research on Pyrolysis Properties of Waste Plastic Films (폐플라스틱 필름의 열분해특성에 대한 연구)

  • Kim, Young-Min;Lee, Boram;Han, Tae Uk;Kim, Seungdo;Yu, Tae-U;Bang, Byoung Yeol;Kim, Joug-Su;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • Pyrolysis characteristics of waste plastic films were investigated by using a thermogravimetric analysis and pyrolyzer-gas chromatography/mass spectrometry. Thermogravimetric analysis results revealed that the pyrolysis of waste plastic films can be divided into two distinct reactions; (1) the decomposition reaction of starch at between 200 and $370^{\circ}C$ and (2) that of other plastic polymers such as PS, PP, PE at between 370 and $510^{\circ}C$. The kinetic analysis results obtained by using the revised Ozawa method indicated that the apparent activation energy of the pyrolysis reaction of waste plastic films was also changed dramatically according to the different decomposition reactions of two major waste plastic film components. Py-GC/MS results also revealed that the typical pyrolyzates of each polymer in waste plastic films were levoglucosan (starch), terephthalic acid (PET), styrene monomer, dimer, and trimer (PS), methylated alkenes (PP), and triplet peaks (PE) composed of alkadiene/alkene/alkane. The phthalate, used as a polymer additive, was also detected on the pyrogram of waste plastic films mixture.