• Title/Summary/Keyword: Teratoma formation

Search Result 20, Processing Time 0.029 seconds

Pericardial Tumor: 14 cases (심낭종양[14례])

  • Park, Hee-Chul;Lee, Hong-Kyun
    • Journal of Chest Surgery
    • /
    • v.15 no.1
    • /
    • pp.118-123
    • /
    • 1982
  • Fourteen cases of pericardia I tumor were clinically experienced from June 1966 to July 1981, for 15 years in St. Mary's Hospital, Department of Thoracic and Cardiovascular Surgery, Catholic Medical College. There were three primary tumors of the pericardium, liposarcoma, teratoma and malignant mesothelioma, and 11 metastatic pericardial tumors. In metastatic pericardial tumors, eight were originated from the lung, one was breast, and the other two cases were unknown origin. There were 6 adenocarcinoma, one small cell carcionoma ~nd one alveolar cell carcinoma in 8 cases from the lung, and 5 male and 3 female patients were composed the metastatic pericardial cancer from the lung. In clinical symptoms were dyspnea in all cases, and 9 cases had the generalized edema and enlarged liver size. Six patients had been operated, three of the primary pericardial tumor and three of metastatic pericardial tumor. Two of the primary tumors were cured satisfactorily by the mass removal, but one died due to cardiac arrest at postoperative one day. In metastatic tumors, operation were performed as two pericardial window formation and one left lower lobectomy with pericardial fenestration, but one was died in second operative day. Other nine metastatic tumors were diagnosed by needle biopsy in one case and by cell block of effusion in eight cases.

  • PDF

Controlling the Gene Expression of Corynebacterium diphtheria Toxin-A Using the Tet-On System in Mouse Embryonic Stem Cells. (Mouse Embryonic Stem Cell에서 Tetracycline-Inducible System(Tet-on System)을 이용한 Corynebacterium diphtheria Toxin-A유전자의 발현 조절)

  • 박재균;임수빈;송지환
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.11-15
    • /
    • 2004
  • Embryonic stem (ES) cells are derived from the inner cell mass of the blastocyst-stage embryos that can be propagated indefinitely and, at the same time, can be differentiated into all the cell types that constitute the body. Current research using ES cells is mainly focused on the efficient generation of specific cell types by employing optimal differentiation conditions, which often requires the genetic manipulation of ES cells. As a way of developing an efficient system to regulate foreign gene expression in ES cells, we have inserted the gene encoding Corynebacterium diphtheria toxin-A (DTA) into an autonomously induced plasmid under positive doxycycline control ('Tet-on' system). In this study, we demonstrate that this system can lead to the cell death of mouse ES cells by the induction of DTA expression when exposed to the tetracycline derivative, doxycycline. MTT assay showed that this induction resulted in the apoptosis of ES cells.

Novel Function of Sprouty4 as a Regulator of Stemness and Differentiation of Embryonic Stem Cells

  • Lee, Jae-Young;Park, Sunghyun;Kim, Kwang-Soo;Ko, Jeong-Jae;Lee, Soohong;Kim, Keun Pil;Park, Kyung-Soon
    • Development and Reproduction
    • /
    • v.20 no.2
    • /
    • pp.149-155
    • /
    • 2016
  • Sprouty (Spry) genes encode inhibitors of the receptor tyrosine kinase signaling cascade, which plays important roles in stem cells. However, the role of Spry4 in the stemness of embryonic stem cells has not been fully elucidated. Here, we used mouse embryonic stem cells (mESCs) as a model system to investigate the role of Spry4 in the stem cells. Suppression of Spry4 expression results in the decreases of cell proliferation, EB formation and stemness marker expression, suggesting that Spry4 activity is associated with stemness of mESCs. Teratoma assay showed that the cartilage maturation was facilitated in Spry4 knocked down mESCs. Our results suggest that Spry4 is an important regulator of the stemness and differentiation of mESCs.

Formation of Crown Gall Tumor in Panax ginseng C.A. Meyer (인삼의 Crown Gall Tumor형성에 관한 연구)

  • 최광태;양덕춘
    • Journal of Ginseng Research
    • /
    • v.10 no.1
    • /
    • pp.45-54
    • /
    • 1986
  • These studies were carried out to obtain the basic information about transformation of ginseng plant by potential vector system, utilization of opine compound by Agrobacterium sap. , and initiation of crown gall tumor callus. Crown gall tumors were induced from stem of Panax ginseng C.A. Meyer by infection of Agrobacterium tumefaciens. Therefore, it was clarified that transformation of ginseng by Ti plasmid was possible. The crown gall tumors induced by Agrobacterium tumefaciens isolated. from the soil were different in a shape, size, and growth rate. Especially, infection of ginseng by Agrobacterium tumefaciens Y104 led to the amorphic tumor, Tumor tissue derived from stem crown gall could not be continuously cultured on the medium which did not contain phytohormone, and did not form the callus even on the medium supplemented with 2,4-D. On the other hand, the root crown gall tumors formed the calli but the formation rate of callus was quite low. As for the utilization of octopine and nopaline, it was found that 3 strains of Agrobacterium app., Y104, Y110 and C58, utilized nopaline only, Y109 utilized octopine, and Y101 failed to utilize either compound.

  • PDF

Comparative Characteristics of Three Human Embryonic Stem Cell Lines

  • Lee, Jung Bok;Kim, Jin Mee;Kim, Sun Jong;Park, Jong Hyuk;Hong, Seok Ho;Roh, Sung Il;Kim, Moon Kyoo;Yoon, Hyun Soo
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • Human embryonic stem (hES) cells have unique features including unlimited growth capacity, expression of specific markers, normal karyotypes and an ability to differentiate. Many investigators have tried to use hES cells for cell-based therapy, but there is little information about the properties of available hES cell lines. We compared the characteristics of three hES cell lines. The expression of SSEA-1, -3, -4, and APase, was examined by immunocytochemistry, and Oct-4 expression was analyzed by RT-PCR. Differentiation of the hES cells in vitro and in vivo led to the formation of embryoid bodies (EBs) or teratomas. We examined the expression of tissue-specific markers in the differentiated cells by semiquantitative RT-PCR, and the ability of each hES cell line to proliferate was measured by flow cytometry of DNA content and ELISA. The three hES cell lines were similar in morphology, marker expression, and teratoma formation. However there were significant differences (P < 0.05) between the differentiated cells formed by the different cell lines in levels of expression of tissue-specific markers such as renin, kallikrein, Glut-2, ${\beta}-$ and ${\delta}-globin$, albumin, and ${\alpha}1-antitrypsin$ (${\alpha}1-AT$). The hES cell lines also differed in proliferative activity. Our observations should be useful in basic and clinical hES cell research.

Derivation of MSC Like-Cell Population from Feeder Free Cultured hESC and Their Proteomic Analysis for Comparison Study with BM-MSC (Feeder Free 상태에서 배양된 인간 배아 줄기세포를 이용한 중간엽 줄기세포 분화 및 단백체학을 이용한 골수 유래 중간엽 줄기세포와의 비교)

  • Park, Soon-Jung;Jeon, Young-Joo;Kim, Ju-Mi;Shin, Jeong-Min;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.143-151
    • /
    • 2010
  • Pluripotency of human embryonic stem cell (hESC) is one of the most valuable ability of hESCs for applying cell therapy field, but also showing side effect, for example teratoma formation. When transplant multipotent stem cell, such as mesnchymal stem cell (MSC) which retains similar differentiation ability, they do not form teratoma in vivo, but there exist limitation of cellular source supply. Accordingly, differentiation of hESC into MSC will be promising cellular source with strong points of both hESC and MSC line. In this study, we described the derivation of MSC like cell population from feeder free cultured hESC (hESC-MSC) using direct differentiation system. Cells population, hESC-MSC and bone marrow derived MSC (BM-MSC) retained similar characteristics in vitro, such as morphology, MSC specific marker expression and differentiation capacity. At the point of differentiation of both cell populations, differentiation rate was slower in hESC-MSC than BM-MSC. As these reason, to verify differentially expressed molecular condition of both cell population which bring out different differentiation rate, we compare the molecular condition of hESC-MSC and BM-MSC using 2-D proteomic analysis tool. In the proteomic analysis, we identified 49 differentially expressed proteins in hESC-MSC and BM-MSC, and they involved in different biological process such as positive regulation of molecular function, biological process, cellular metabolic process, nitrogen compound metabolic process, macromolecule metabolic process, metabolic process, molecular function, and positive regulation of molecular function and regulation of ubiquitin protein ligase activity during mitotic cell cycle, cellular response to stress, and RNA localization. As the related function of differentially expressed proteins, we sought to these proteins were key regulators which contribute to their differentiation rate, developmental process and cell proliferation. Our results suggest that the expressions of these proteins between the hESC-MSC and BM-MSC, could give to us further evidence for hESC differentiation into the mesenchymal stem cell is associated with a differentiation factor. As the initial step to understand fundamental difference of hESC-MSC and BM-MSC, we sought to investigate different protein expression profile. And the grafting of hESC differentiation into MSC and their comparative proteomic analysis will be positively contribute to cell therapy without cellular source limitation, also with exact background of their molecular condition.

Neuregulin-1 promotes cardiomyocyte differentiation of genetically engineered embryonic stem cell clones

  • Wang, Zhi;Xu, Guotong;Wu, Yalan;Liu, Shaowen;Sun, Baogui;Dai, Qiuyan
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.699-704
    • /
    • 2008
  • Embryonic stem (ES) cell-derived cardiomyocytes (ESCMs) must be specifically purified in order to prevent teratoma formation, and this confusing issue has hampered their clinical application. We therefore investigated a technique to generate pure labeled ESCMs for possible use in cardiac repair. We generated transgenic ES cell lines expressing enhanced green fluorescent protein (EGFP) under the transcriptional control of the $\alpha$-cardiac myosin heavy chain ($\alpha$-MHC) promoter. Differentiated EGFP-positive ES cells displayed characteristics of CMs. Furthermore, neuregulin-1 (NRG-1) upregulated the expression of the cardiac-restricted transcription factors Nkx2.5 and GATA-4, as well as differentiated CM factors ($\alpha$-MHC, $\beta$-MHC). Immunohistochemistry demonstrated that NRG-1 increased expression of cardiac-specific troponin T in the beating foci of the embryoid bodies. This work revealed a potential method for specifically labeling and enriching ESCMs by combining genetically-engineered ES cell clones and exogenous growth factor treatment.

Comparison of Different Vehicles on Human Embryonic Stem Cells using Vitrification

  • Lee, Jae-Ho;Kim, Gi-Jin;Kim, Sin-Ae;Lee, Won-Woo;Lee, Hey-Jin;Lee, Dong-Ryul;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.30 no.4
    • /
    • pp.279-285
    • /
    • 2006
  • Vitrification has been suggested to be an effective method for the cryopreservation of human ES cells. However, the efficiency of vitrification with different vehicles remains a matter of ongoing controversy. The objective of this study was to assess the efficiency of cryopreservation in human ES cells by vitrification using different vehicles. A human ES cell line and a variety of vehicles, including micro-droplet (MD), open-pulled straw (OPS) and electron microscopic grid (EM-grid), were employed in an attempt to assess vitrification efficiency. In order to evaluate the survivability and the undifferentiated state of the post-vitrified human ES cells, we conducted alkaline phosphatase staining and characterization via both RT-PCR and immunofluorescence assays. The survival rates of the post-vitrified human ES cells using MD, OPS and EM-grid were determined to be 61.5%, 66.6% and 53.8%, respectively. There also exist significant differences between slow-freezing and vitrification (p<0.01). However, no significant differences were detected between the vehicle types. Finally, the pluripotency of human ES cells after thawing was verified by teratoma formation. Cryopreservation using vitrification is more effective than slow-freezing, and the efficiency of vehicles proved effective with regard to the preservation of human ES cells.

Passaging Method for Expansion of Undifferentiated Human Embryonic Stem Cells by Pipetting Technique

  • Lee, Sung-Geum;Moon, Sung-Hwan;Lee, Soo-Hong;Lee, Hey-Jin;Kim, Jae-Hwan;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.30 no.4
    • /
    • pp.287-291
    • /
    • 2006
  • We have developed a new passaging technique for the expansion of human embryonic stem cells (hESCs) that involves simply pipetting portions of hESCs acquired from colonies, reducing the laborious and time-consuming steps in the expansion of hESCs. Compared to general mechanical methods of passaging, our pipetting method allowed hESCs colonies to be broken into small fragments, which showed significantly higher attachment rates onto feeder cell layers. This technique produced three times the number of hESCs colonies than conventional mechanical methods. In addition, this pipetting method allowed us to distinguish differentiated hESCs from undifferentiated hESCs during hESCs colony pipetting. The hESCs cultured by pipetting method displayed normal human chromosomes for over 60 passages. According to RT-PCR and immunohistochemical analysis, the hESCs successfully maintained their undifferentiated state and pluripotency which was also confirmed by teratoma formation in viva Therefore, the pipetting method described in this study is a useful tool to efficiently and quickly expand hESCs on a large scale without enzyme treatment.

Differentiation of Mesenchymal Stem Cell-like Cell from Feeder Free Cultured Human Embryonic Stem Cells using Direct Induction System (Feeder-free에서 배양된 인간배아줄기세포의 직접분화유도 방법을 이용한 간엽줄기세포로의 분화)

  • Lee, Min-Ji;Lee, Jae-Ho;Kim, Ju-Mi;Shin, Jeong-Min;Park, Soon-Jung;Chung, Sun-Hwa;Lee, Kyung-Il;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Mesenchymal stem cells (MSCs) have the multipotent capacity and this potential can be applied for obtaining valuable cell types which can use for cell therapy on various regenerative diseases. However, insufficient availability of cellular source is the major problem in cell therapy field using adult stem cell sources. Recently, human embryonic stem cells (hESCs) have been highlighted to overcome a limitation of adult cellular sources because they retain unlimited proliferation capacity and pluripotency. To use of hESCs in cell therapy, above all, animal pathogen free culture system and purification of a specific target cell population to avoid teratoma formation are required. In this study, we describe the differentiation of a mesenchymal stem cell-like cells population from feeder-free cultured hESCs(hESC-MSCs) using direct induction system. hESC-MSCs revealed characteristics similar to MSCs derived from bone marrow, and undifferentiated cell markers were extremely low in hESC-MSCs in RT-PCR, immunostaining and FACS analyses. Thus, this study proffer a basis of effective generation of specialized human mesenchymal stem cell types which can use for further clinical applications, from xenofree cultured hESCs using direct induction system.