• 제목/요약/키워드: TensorFlow Lite

검색결과 4건 처리시간 0.017초

증강현실 게임에서 딥러닝을 활용한 배경객체 분석에 관한 연구 (A Study on the Analysis of Background Object Using Deep Learning in Augmented Reality Game)

  • 김한호;이동열
    • 융합정보논문지
    • /
    • 제11권11호
    • /
    • pp.38-43
    • /
    • 2021
  • 증강현실기술을 사용하는 증강현실 게임이 늘어남에 따라 사용자들의 요구도 많아지고 있다. 증강현실 게임에서 사용되는 게임 기술에는 MARKER, MARKERLESS, GPS등을 활용한 게임이 주를 이루고 있다. 이러한 기술을 활용한 게임은 배경과 다른 오브젝트를 증강할 수가 있다. 이 문제를 해결하기 위해 증강현실의 중요한 요소인 배경에서 객체를 분석하여 증강현실 게임을 개발하는데 도움을 주고자 한다. 증강현실 게임에서 배경을 분석하기 위해 UNITY엔진에서 TensorFlow Lite를 활용하여 딥러닝 모델을 적용하여 배경 객체를 분석하였다. 이 결과를 활용하여 배경에서 분석된 객체의 종류에 맞춰 게임에 증강되는 오브젝트를 배치 할 수 있다는 결과를 얻었다. 이 연구를 활용하여 배경에 맞는 오브젝트를 증강하여 향상된 증강현실 게임을 개발 할 수 있을 것이다.

다중영상을 이용한 딥러닝 기반 온디바이스 증강현실 시스템 (Deep Learning Based On-Device Augmented Reality System using Multiple Images)

  • 정태현;박인규
    • 방송공학회논문지
    • /
    • 제27권3호
    • /
    • pp.341-350
    • /
    • 2022
  • 본 논문은 온디바이스 환경에서 다중 시점 영상을 입력 받아 객체를 증강하고, 현실 공간에 의한 가려짐을 구현하는 딥러닝 기반의 증강현실 시스템을 제안한다. 이는 세부적으로 카메라 자세 추정, 깊이 추정, 객체 증강 구현의 세 기술적 단계로 나눠지며 각 기법은 온디바이스 환경에서의 최적화를 위해 다양한 모바일 프레임워크를 사용한다. 카메라 자세 추정 단계에서는 많은 계산량을 필요로 하는 특징 추출 알고리즘을 GPU 병렬처리 프레임워크인 OpenCL을 통해 가속하여 사용하며, 깊이 영상 추론 단계에서는 모바일 심층신경망 프레임워크 TensorFlow Lite를 사용하여 가속화된 단안, 다중 영상 기반의 깊이 영상 추론을 수행한다. 마지막으로 모바일 그래픽스 프레임워크 OpenGL ES를 활용해 객체 증강 및 가려짐을 구현한다. 제시하는 증강현실 시스템은 안드로이드 환경에서 GUI를 갖춘 애플리케이션으로 구현되며 모바일과 PC 환경에서의 동작 정확도 및 처리 시간을 평가한다.

인공지능과 증강현실 기술을 이용한 모래성 놀이 가이드 애플리케이션 설계 및 구현 (Design and Implementation of Sandcastle Play Guide Application using Artificial Intelligence and Augmented Reality)

  • 류지승;장승우;문유정;이정진
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제28권3호
    • /
    • pp.79-89
    • /
    • 2022
  • 최근 스마트폰이 널리 보급되고 모바일 기기의 그래픽스 처리 성능이 발전함에 따라 아이들의 물리적인 활동을 돕는 다양한 모바일 애플리케이션들이 연구되고 있다. 본 논문에서는 인공지능과 증강현실 기술을 활용해 모래성 쌓기 놀이를 안내하는 모바일 애플리케이션 SandUp을 제안한다. 모래성을 쌓는 과정에서 아이는 모바일 증강현실 기술을 활용해 제시된 목표 모래성을 현실 세계에 증강하여 살펴볼 수 있다. 또한, SandUp은 모래성의 완성을 돕기 위해 단계적으로 필요한 모래 모양과 Task를 알려주고, 모바일 폰의 카메라와 딥러닝 인식모델을 이용해 실시간으로 현재 진행 상황을 인식하고 시각적, 청각적 피드백을 제공한다. 우리는 Flutter와 TensorFlow Lite를 이용해 SandUp 앱의 프로토타입을 구현하였다. 제안하는 SandUp 앱의 사용성과 효과를 평가하기 위해 성인을 대상으로 설문조사를 수행하고 앱이 목표로 한 4-7세 아이들을 모집하여 실험을 진행했다. 실험 결과와 학부모의 피드백을 분석하여 앱의 발전 가능성 및 개선점을 도출하고 향후 연구 방향을 제시한다.

딥러닝 기법을 이용한 주차 공간 자동 식별 시스템 (An Automatic Parking Space Identification System using Deep Learning Techniques)

  • 서민경;엄성용
    • 문화기술의 융합
    • /
    • 제7권4호
    • /
    • pp.635-640
    • /
    • 2021
  • 본 논문에서는 촬영된 주차장 사진으로부터 빈 주차 공간을 자동 식별할 수 있는 주차 공간 자동 식별 시스템에 대해 설명한다. 이 시스템은 딥러닝 기법에 기반한 시스템으로, 다양한 주차장 사진들을 토대로 학습을 진행하여 식별 결과의 정확도가 높으며, 기존의 주차 관리 시스템에 적용할 수 있다. 한편, 본 시스템은 손쉬운 적용 테스트를 위해, 스마트폰용 애플리케이션으로도 개발되었다. 따라서 스마트폰 카메라를 통해 주차장 사진을 찍으면, 촬영된 이미지를 자동 인식하며 빈 주차 공간을 자동 식별할 수 있다.