• 제목/요약/키워드: Tensor voting

검색결과 14건 처리시간 0.026초

텐서 보팅에 기반한 영상처리 및 응용 (Image Processing based on Tensor Voting and its Applications)

  • 박종현;박순영;이귀상
    • 스마트미디어저널
    • /
    • 제1권2호
    • /
    • pp.23-33
    • /
    • 2012
  • 본 논문에서는 영상처리 및 컴퓨터비전 분야에서 다양하게 응용되고 있는 텐서보팅(tensor voting)의 특징을 고찰하고자 한다. 일반적으로 텐서보팅은 점 (points), 곡선 성분 (curve elements), 그리고 표면 조각 성분 (surface patch elements)로 주어진 n-차원의 데이터들로부터 교차점 (junction), 곡선 (curve), 영역 (region), 그리고 표면 (surface)과 같은 구조 특징을 추론할 수 있다. 영상 및 장면에서 구조적 추론을 이용한 지각기반 그룹핑 (perceptual grouping) 방법들이 다양한 분야에서 연구되어 응용되고 있다. 텐서보링은 잡음에 강건한 특징을 제공하며 다양한 응용을 통하여 효율성을 보여주고 있다.

  • PDF

텐서보팅을 이용한 텍스트 배열정보의 획득과 이를 이용한 텍스트 검출 (Extraction of Text Alignment by Tensor Voting and its Application to Text Detection)

  • 이귀상;또안;박종현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권11호
    • /
    • pp.912-919
    • /
    • 2009
  • 본 논문에서는 이차원 텐서보팅과 에지 기반 방법을 이용하여 자연영상에서 문자를 검출하는 새로운 방법을 제시한다. 텍스트의 문자들은 보통 연속적인 완만한 곡선 상에 배열되어 있고 서로 가깝게 위치하며, 이러한 특성은 텐서보팅에 의하여 효과적으로 검출될 수 있다. 이차원 텐서보팅은 토큰의 연속성을 curve saliency 로 산출하며 이러한 특성은 다양한 영상해석에 사용된다. 먼저 에지 검출을 이용하여 영상 내의 텍스트 영역이 위치할 가능성이 있는 텍스트 후보영역을 찾고 이러한 후보영역의 연속성을 텐서보팅에 의해 검증하여 잡음영역을 제거하고 텍스트 영역만을 구분한다. 실험 결과, 제안된 방법은 복잡한 자연영상에서 효과적으로 텍스트 영역을 검출함을 확인하였다.

UAV-based bridge crack discovery via deep learning and tensor voting

  • Xiong Peng;Bingxu Duan;Kun Zhou;Xingu Zhong;Qianxi Li;Chao Zhao
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.105-118
    • /
    • 2024
  • In order to realize tiny bridge crack discovery by UAV-based machine vision, a novel method combining deep learning and tensor voting is proposed. Firstly, the grid images of crack are detected and descripted based on SE-ResNet50 to generate feature points. Then, the probability significance map of crack image is calculated by tensor voting with feature points, which can define the direction and region of crack. Further, the crack detection anchor box is formed by non-maximum suppression from the probability significance map, which can improve the robustness of tiny crack detection. Finally, a case study is carried out to demonstrate the effectiveness of the proposed method in the Xiangjiang-River bridge inspection. Compared with the original tensor voting algorithm, the proposed method has higher accuracy in the situation of only 1-2 pixels width crack and the existence of edge blur, crack discontinuity, which is suitable for UAV-based bridge crack discovery.

Text Detection based on Edge Enhanced Contrast Extremal Region and Tensor Voting in Natural Scene Images

  • Pham, Van Khien;Kim, Soo-Hyung;Yang, Hyung-Jeong;Lee, Guee-Sang
    • 스마트미디어저널
    • /
    • 제6권4호
    • /
    • pp.32-40
    • /
    • 2017
  • In this paper, a robust text detection method based on edge enhanced contrasting extremal region (CER) is proposed using stroke width transform (SWT) and tensor voting. First, the edge enhanced CER extracts a number of covariant regions, which is a stable connected component from input images. Next, SWT is created by the distance map, which is used to eliminate non-text regions. Then, these candidate text regions are verified based on tensor voting, which uses the input center point in the previous step to compute curve salience values. Finally, the connected component grouping is applied to a cluster closed to characters. The proposed method is evaluated with the ICDAR2003 and ICDAR2013 text detection competition datasets and the experiment results show high accuracy compared to previous methods.

텐서보팅(Tensor Voting)기법을 이용한 지상라이다 자료의 노이즈 처리 (Noise Removal of Terrestrial LiDAR Data Using Tensor Voting Method)

  • 서일홍;손홍규;김창재;임진희
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.157-160
    • /
    • 2010
  • Terrestrial LiDAR data contains outliers which do not need in processing purpose. That is inefficient in the aspect of productivity. These noise requires manual process to be removed, which causes inefficiency in aspect of productivity. The purpose of this research is to demonstrate a possibility of automatic outlier removal of LiDAR data using 3D Tensor Voting method. For this, we presented in this article about the procedure to perform the application of Tensor Voting algorithm to the real data from terrestrial LiDAR.

  • PDF

텐서보팅과 마르코프 랜덤 필드를 이용한 자연 영상의 텍스트 이진화 (Natural Scene Text Binarization using Tensor Voting and Markov Random Field)

  • 최현수;이귀상
    • 스마트미디어저널
    • /
    • 제4권4호
    • /
    • pp.18-23
    • /
    • 2015
  • 본 논문에서는 텐서보팅을 이용하여 기존 마르코프 랜덤 필드 메소드 안의 가우시안 혼합 모델 함수의 성능을 향상시킬 수 있는 적합한 클러스터 개수 검출 방법을 제시한다. 제안하는 방법의 핵심 포인트는 텐서보팅의 인풋 데이터 토큰의 연속성인 saliency map을 통한 중심점 개수의 추출이다. 우리는 가장 먼저 주어진 자연 영상에서 전경 및 배경 후보 영역을 분리한다. 다음으로, 분리된 각 후보 영역에 대하여 텐서보팅을 적용하여 적절한 클러스터 개수를 추출한다. 우리는 검출된 클러스터 개수를 이용하여 정확한 가우시안 혼합 모델 모델링을 수행할 수 있다. 그리고 이를 적용한 마르코프 랜덤 필드의 unary term과 pairwise term을 계산하여 자연 영상의 텍스트 이진화 결과를 반환한다. 실험 결과, 제안된 방법이 최적의 클러스터 개수를 반환하고, 향상된 텍스트 이진화 결과를 반환함을 확인하였다.

Systematic Approach for Detecting Text in Images Using Supervised Learning

  • Nguyen, Minh Hieu;Lee, GueeSang
    • International Journal of Contents
    • /
    • 제9권2호
    • /
    • pp.8-13
    • /
    • 2013
  • Locating text data in images automatically has been a challenging task. In this approach, we build a three stage system for text detection purpose. This system utilizes tensor voting and Completed Local Binary Pattern (CLBP) to classify text and non-text regions. While tensor voting generates the text line information, which is very useful for localizing candidate text regions, the Nearest Neighbor classifier trained on discriminative features obtained by the CLBP-based operator is used to refine the results. The whole algorithm is implemented in MATLAB and applied to all images of ICDAR 2011 Robust Reading Competition data set. Experiments show the promising performance of this method.

Reconstruction of Collagen Using Tensor-Voting & Graph-Cuts

  • Park, Doyoung
    • 한국정보기술학회 영문논문지
    • /
    • 제9권1호
    • /
    • pp.89-102
    • /
    • 2019
  • Collagen can be used in building artificial skin replacements for treatment of burns and towards the reconstruction of bone as well as researching cell behavior and cellular interaction. The strength of collagen in connective tissue rests on the characteristics of collagen fibers. 3D confocal imaging of collagen fibers enables the characterization of their spatial distribution as related to their function. However, the image stacks acquired with confocal laser-scanning microscope does not clearly show the collagen architecture in 3D. Therefore, we developed a new method to reconstruct, visualize and characterize collagen fibers from fluorescence confocal images. First, we exploit the tensor voting framework to extract sparse reliable information about collagen structure in a 3D image and therefore denoise and filter the acquired image stack. We then propose to segment the collagen fibers by defining an energy term based on the Hessian matrix. This energy term is minimized by a min cut-max flow algorithm that allows adaptive regularization. We demonstrate the efficacy of our methods by visualizing reconstructed collagen from specific 3D image stack.

2D 텐서 보팅에 기반 한 손상된 텍스트 영상의 복원 및 분할 (Corrupted Region Restoration based on 2D Tensor Voting)

  • 박종현;;이귀상
    • 정보처리학회논문지B
    • /
    • 제15B권3호
    • /
    • pp.205-210
    • /
    • 2008
  • 본 논문에서는 잡음에 의해 손상된 텍스트 영상으로부터 복원 및 분할을 위한 새로운 접근 방법을 제안한다. 제안된 방법은 손상된 영역의 복원을 위하여 색상 및 비색상 성분을 2차 대칭 스틱 텐서로 표현하고 보팅 기반의 손상된 영역을 복원하였으며, 마지막으로 클러스터링 방법에 의해 분할을 수행한다. 먼저 우리는 제안된 색상 선택함수에 의해 잡음에 강건한 색상과 비색상 성분을 선택한다. 두 번째 단계에서는 각각의 선택된 특징 벡터들은 스틱 텐서로 표현하였으며 제한된 보팅 커널의 필드내에서 이웃하는 보터들과 통신을 통하여 새롭게 정의된다. 따라서 2차 보팅 후 각각의 스틱 텐서는 이웃하는 텐서와 같은 특성을 가지며 손상된 영역들을 복원할 수 있다. 마지막으로 복원된 영상의 성능을 평가하기 위하여 적응적 평균 이동 알고리즘과 클러스터링 알고리즘을 이용하여 영상 분할을 수행하였다. 실험에서 제안된 방법은 전체적인 처리과정을 자동적으로 수행 가능하였으며 배경 및 객체의 영역에서 효율적인 복원 및 분할을 수행할 수 있었다.

Stroke Width Based Skeletonization for Text Images

  • Nguyen, Minh Hieu;Kim, Soo-Hyung;Yang, Hyung Jeong;Lee, Guee Sang
    • Journal of Computing Science and Engineering
    • /
    • 제8권3호
    • /
    • pp.149-156
    • /
    • 2014
  • Skeletonization is a morphological operation that transforms an original object into a subset, which is called a 'skeleton'. Skeletonization has been intensively studied for decades and is a challenging issue especially for special target objects. This paper proposes a novel approach to the skeletonization of text images based on stroke width detection. First, the preliminary skeleton is detected by using a Canny edge detector with a Tensor Voting framework. Second, the preliminary skeleton is smoothed, and junction points are connected by interpolation compensation. Experimental results show the validity of the proposed approach.