• Title/Summary/Keyword: Tensor Flow

Search Result 185, Processing Time 0.03 seconds

Consultation Management Model based on Behavior Classification of Special-Needs Students (특수학생들의 행동 분류 기반의 상담관리 모델)

  • Park, Won-Cheol;Park, Koo-Rack
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.21-30
    • /
    • 2021
  • Unlike behaviors that are generally known, information regarding unspecific behaviors is insufficient. For an education or guidance regarding the unspecific behaviors, collection and management of data regarding the unspecific behaviors of special-needs students are needed. In this paper, a consultation management model based on behavior classification of special-needs students using machine learning is proposed. It collects data by photographing the behavior of special students in real time, analyzes the behavior pattern, composes a data set, and trains it in the suggestion system. It is possible to improve the accuracy by comparing the behavior of special students photographed later into the suggestion system and analyzing the results by comparing it with the existing data again. The test has been performed by arbitrarily applying unspecific behaviors that are not stored in the database, and the forecast model has accurately classified and grouped the input data. Also, it has been verified that it is possible to accurately distinguish and classify the behaviors through the feature data of the behaviors even if there are some errors in the input process.

Decision Tree Techniques with Feature Reduction for Network Anomaly Detection (네트워크 비정상 탐지를 위한 속성 축소를 반영한 의사결정나무 기술)

  • Kang, Koohong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.795-805
    • /
    • 2019
  • Recently, there is a growing interest in network anomaly detection technology to tackle unknown attacks. For this purpose, diverse studies using data mining, machine learning, and deep learning have been applied to detect network anomalies. In this paper, we evaluate the decision tree to see its feasibility for network anomaly detection on NSL-KDD data set, which is one of the most popular data mining techniques for classification. In order to handle the over-fitting problem of decision tree, we select 13 features from the original 41 features of the data set using chi-square test, and then model the decision tree using TensorFlow and Scik-Learn, yielding 84% and 70% of binary classification accuracies on the KDDTest+ and KDDTest-21 of NSL-KDD test data set. This result shows 3% and 6% improvements compared to the previous 81% and 64% of binary classification accuracies by decision tree technologies, respectively.

Automatic Object Extraction from Electronic Documents Using Deep Neural Network (심층 신경망을 활용한 전자문서 내 객체의 자동 추출 방법 연구)

  • Jang, Heejin;Chae, Yeonghun;Lee, Sangwon;Jo, Jinyong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.11
    • /
    • pp.411-418
    • /
    • 2018
  • With the proliferation of artificial intelligence technology, it is becoming important to obtain, store, and utilize scientific data in research and science sectors. A number of methods for extracting meaningful objects such as graphs and tables from research articles have been proposed to eventually obtain scientific data. Existing extraction methods using heuristic approaches are hardly applicable to electronic documents having heterogeneous manuscript formats because they are designed to work properly for some targeted manuscripts. This paper proposes a prototype of an object extraction system which exploits a recent deep-learning technology so as to overcome the inflexibility of the heuristic approaches. We implemented our trained model, based on the Faster R-CNN algorithm, using the Google TensorFlow Object Detection API and also composed an annotated data set from 100 research articles for training and evaluation. Finally, a performance evaluation shows that the proposed system outperforms a comparator adopting heuristic approaches by 5.2%.

The Road Speed Sign Board Recognition, Steering Angle and Speed Control Methodology based on Double Vision Sensors and Deep Learning (2개의 비전 센서 및 딥 러닝을 이용한 도로 속도 표지판 인식, 자동차 조향 및 속도제어 방법론)

  • Kim, In-Sung;Seo, Jin-Woo;Ha, Dae-Wan;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.699-708
    • /
    • 2021
  • In this paper, a steering control and speed control algorithm was presented for autonomous driving based on two vision sensors and road speed sign board. A car speed control algorithm was developed to recognize the speed sign by using TensorFlow, a deep learning program provided by Google to the road speed sign image provided from vision sensor B, and then let the car follows the recognized speed. At the same time, a steering angle control algorithm that detects lanes by analyzing road images transmitted from vision sensor A in real time, calculates steering angles, controls the front axle through PWM control, and allows the vehicle to track the lane. To verify the effectiveness of the proposed algorithm's steering and speed control algorithms, a car's prototype based on the Python language, Raspberry Pi and OpenCV was made. In addition, accuracy could be confirmed by verifying various scenarios related to steering and speed control on the test produced track.

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

Dynamic Resource Adjustment Operator Based on Autoscaling for Improving Distributed Training Job Performance on Kubernetes (쿠버네티스에서 분산 학습 작업 성능 향상을 위한 오토스케일링 기반 동적 자원 조정 오퍼레이터)

  • Jeong, Jinwon;Yu, Heonchang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.205-216
    • /
    • 2022
  • One of the many tools used for distributed deep learning training is Kubeflow, which runs on Kubernetes, a container orchestration tool. TensorFlow jobs can be managed using the existing operator provided by Kubeflow. However, when considering the distributed deep learning training jobs based on the parameter server architecture, the scheduling policy used by the existing operator does not consider the task affinity of the distributed training job and does not provide the ability to dynamically allocate or release resources. This can lead to long job completion time and low resource utilization rate. Therefore, in this paper we proposes a new operator that efficiently schedules distributed deep learning training jobs to minimize the job completion time and increase resource utilization rate. We implemented the new operator by modifying the existing operator and conducted experiments to evaluate its performance. The experiment results showed that our scheduling policy improved the average job completion time reduction rate of up to 84% and average CPU utilization increase rate of up to 92%.

Quantitative Analysis for Win/Loss Prediction of 'League of Legends' Utilizing the Deep Neural Network System through Big Data

  • No, Si-Jae;Moon, Yoo-Jin;Hwang, Young-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.213-221
    • /
    • 2021
  • In this paper, we suggest the Deep Neural Network Model System for predicting results of the match of 'League of Legends (LOL).' The model utilized approximately 26,000 matches of the LOL game and Keras of Tensorflow. It performed an accuracy of 93.75% without overfitting disadvantage in predicting the '2020 League of Legends Worlds Championship' utilizing the real data in the middle of the game. It employed functions of Sigmoid, Relu and Logcosh, for better performance. The experiments found that the four variables largely affected the accuracy of predicting the match --- 'Dragon Gap', 'Level Gap', 'Blue Rift Heralds', and 'Tower Kills Gap,' and ordinary users can also use the model to help develop game strategies by focusing on four elements. Furthermore, the model can be applied to predicting the match of E-sports professional leagues around the world and to the useful training indicators for professional teams, contributing to vitalization of E-sports.

Thermoluminescence Kinetics of LYGBO Crystal (LYGBO 단결정의 열형광 전자포획준위 인자)

  • Sunghwan, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.17-23
    • /
    • 2023
  • In this study, the thermoluminescence kinetics of electron trap in Li6Y0.5Gd0.5(BO3)3 (LY0.5G0.5BO) scintillator for neutron detection composed of Li, Gd, and B with a high neutron response cross-section were investigated. The thermoluminescence glow curve of the LY0.5G0.5BO scintillation single crystal was measured and analyzed using the peak shape method, the initial rise method, and the machine learning algorithm to evaluate the physical parameters of the electron trap. The glow curve of the LY0.5G0.5BO scintillation single crystal consisted of a single peak. As a result of analyzing this peak, the activation energy, emission order, and frequency factor of the electron trap were 0.61 eV, 1.1, and 1.7×107 s-1, respectively. In addition, the possibility of thermoluminescence analysis of scintillators using machine learning was confirmed.

Study of regularization of long short-term memory(LSTM) for fall detection system of the elderly (장단기 메모리를 이용한 노인 낙상감지시스템의 정규화에 대한 연구)

  • Jeong, Seung Su;Kim, Namg Ho;Yu, Yun Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1649-1654
    • /
    • 2021
  • In this paper, we introduce a regularization of long short-term memory (LSTM) based fall detection system using TensorFlow that can detect falls that can occur in the elderly. Fall detection uses data from a 3-axis acceleration sensor attached to the body of an elderly person and learns about a total of 7 behavior patterns, each of which is a pattern that occurs in daily life, and the remaining 3 are patterns for falls. During training, a normalization process is performed to effectively reduce the loss function, and the normalization performs a maximum-minimum normalization for data and a L2 regularization for the loss function. The optimal regularization conditions of LSTM using several falling parameters obtained from the 3-axis accelerometer is explained. When normalization and regularization rate λ for sum vector magnitude (SVM) are 127 and 0.00015, respectively, the best sensitivity, specificity, and accuracy are 98.4, 94.8, and 96.9%, respectively.

Prediction of Wave Transmission Characteristics of Low Crested Structures Using Artificial Neural Network

  • Kim, Taeyoon;Lee, Woo-Dong;Kwon, Yongju;Kim, Jongyeong;Kang, Byeonggug;Kwon, Soonchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.313-325
    • /
    • 2022
  • Recently around the world, coastal erosion is paying attention as a social issue. Various constructions using low-crested and submerged structures are being performed to deal with the problems. In addition, a prediction study was researched using machine learning techniques to determine the wave attenuation characteristics of low crested structure to develop prediction matrix for wave attenuation coefficient prediction matrix consisting of weights and biases for ease access of engineers. In this study, a deep neural network model was constructed to predict the wave height transmission rate of low crested structures using Tensor flow, an open source platform. The neural network model shows a reliable prediction performance and is expected to be applied to a wide range of practical application in the field of coastal engineering. As a result of predicting the wave height transmission coefficient of the low crested structure depends on various input variable combinations, the combination of 5 condition showed relatively high accuracy with a small number of input variables defined as 0.961. In terms of the time cost of the model, it is considered that the method using the combination 5 conditions can be a good alternative. As a result of predicting the wave transmission rate of the trained deep neural network model, MSE was 1.3×10-3, I was 0.995, SI was 0.078, and I was 0.979, which have very good prediction accuracy. It is judged that the proposed model can be used as a design tool by engineers and scientists to predict the wave transmission coefficient behind the low crested structure.