• 제목/요약/키워드: Tensor Factorization

검색결과 15건 처리시간 0.024초

비음수 텐서 분해와 은닉 마코프 모델을 이용한 터널 환경에서의 음향 사고 검지 방법 (An Acoustic Event Detection Method in Tunnels Using Non-negative Tensor Factorization and Hidden Markov Model)

  • 김남균;전광명;김홍국
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권9호
    • /
    • pp.265-273
    • /
    • 2018
  • 본 논문에서는 터널 환경에서 비음수 텐서분해와 가우시안 혼합을 갖는 은닉 마코프 모델을 사용한 사고 검지 시스템을 제안한다. 대부분의 터널 내 환경은 내재된 환경으로 인한 작은 사고들이 발생한다. 특히 터널 내에서 사고가 발생할 시, 2차, 3차 사고가 발생되어 큰 재해로 발전할 가능성이 높다. 주로 시각기반의 사고 검지 기법들이 많이 제안되어왔으나, 시야각 등의 문제로 오검지가 발생하는 단점이 존재한다. 이러한 시각기반의 검지 기법을 보완하기 위해 본 논문에 제안된 기법은 터널환경에서의 음향사고 검출의 정확도 개선을 위해 비음수 텐서분해와 가우시안 혼합모델(Gaussian mixture model, GMM) 기반의 은닉 마코프 모델(hidden Markov model, HMM)을 이용한다. 제안된 방법은 비음수 텐서 분해 기법에 활용되는 사고음향 모델과 잡음모델을 사용하여 사고음을 분리하고, 분리된 사고음을 기반으로 기 훈련된 GMM-HMM 기반의 음향모델을 기반으로 우도비 검증을 수행하여 사고 검지를 수행한다. 제안된 방법의 검지 정확도를 평가하기 위해 터널 내 환경잡음과 사고음을 합성하여 생성한 데이터를 생성하였고, 높은 정확도를 얻을 수 있었다.

강인 음성 인식을 위한 가중화된 음원 분산 및 잡음 의존성을 활용한 보조함수 독립 벡터 분석 기반 음성 추출 (Speech extraction based on AuxIVA with weighted source variance and noise dependence for robust speech recognition)

  • 신의협;박형민
    • 한국음향학회지
    • /
    • 제41권3호
    • /
    • pp.326-334
    • /
    • 2022
  • 이 논문에서는 배경 잡음이 포함되는 환경에서 강인한 음성 인식을 하기 위한 전처리 단계로서 쓰이는 목표 음성 향상 방법을 제안한다. 보조 함수 기반의 독립 벡터 분석(Auxiliary-function-based Independent Vector Analysis, AuxIVA) 기법을 기반으로 가중 공분산 행렬에서 시간에 따라 변하는 분산에 의해서 가중치가 결정된다. 목표 음성에 대한 시간-주파수별 기여도를 나타내는 마스크를 통해 분산의 크기를 조절한다. 이러한 마스크는 음성 향상을 위해서 학습된 신경망 혹은 목표 화자로부터의 직선 성분의 기여도를 찾기 위한 확산성으로부터 추정할 수 있다. 이에 더하여 둘러싼 잡음에 대한 출력들은 서로 다차원 독립 성분 분석을 도입하여 의존성을 주어 안정적으로 노이즈 성분을 추출할 수 있다. 이 AuxIVA 기반의 목표 음성 추출 알고리즘은 또한 노이즈에 대해서 비음수 행렬 분해(Non-negative Matrix Factorization, NMF)를 비음수 텐서 분해(Non-negative Tensor Factorization, NTF)로 확장하여 독립 단순 행렬 분석(Independent Low-Rank Matrix Analysis, ILRMA)의 틀에서도 수행될 수 있다. 이러한 확장을 통해서 여전히 잡음 출력 채널에서의 채널간 의존성을 유지할 수 있다. CHiME-4데이터셋에 대한 실험 결과는 소개된 알고리즘에 대한 효과를 보여준다.

A NOTE ON A DIFFERENTIAL MODULES

  • Lee, Chong Yun
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제14권1호
    • /
    • pp.22-26
    • /
    • 1975
  • In this paper, we define a differential module and study its properties. In section 2, as for propositions, Ive research some properties, directsum, isomorphism of factorization, exact sequence of derived modules. And then as for theorem, I try to present the following statement, if the sequence of homomorphisms of differential modules is exact. Then the sequence of homomorphisms of Z(X) is exact, also the sequence of homomorphisms of Z(X) is exact. According to the theorem, as for Lemma, we consider commutative diagram between exact sequence of Z(X) and exact sequence of Z'(X) . As an immediate consequence of this theorem, we obtain the following result. If M is an arbitrary module and the sequence of homomorphisms of the modules Z(X) is exact, then the sequence of their tensor products with the trivial endomorphism is semi-exact.

  • PDF

모바일 상황정보와 온라인 친구네트워크정보 기반 텐서 분해를 통한 오프라인 친구 추천 기법 (Offline Friend Recommendation using Mobile Context and Online Friend Network Information based on Tensor Factorization)

  • 김경민;김태훈;현순주
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권8호
    • /
    • pp.375-380
    • /
    • 2016
  • 스마트폰과 Online Social Network Service(OSNS)의 대중화를 통해 언제 어디서든 주변인뿐만 아니라 전 세계 사람들과 상호작용 할 수 있게 되었고, 그 결과 사람들의 OSNS 사용률은 계속 증가하고 있다. 그런데, 일부 OSNS를 통한 대인관계 형성에 집중하는 사람들의 경우, 수많은 Face-to-Face Interaction(F2F Interaction)을 통해 형성되는 인간관계의 과정을 "친구추천" 버튼 하나로 건너뜀으로써 대인관계 기술 발달 및 유지에 어려움을 겪을 수 있다. 본 논문에서는 오프라인에서 F2F Interaction 기회를 발견 및 제공할 수 있는 상황정보 기반의 친구추천 기법을 제시한다. 이를 위해 스마트폰 센서로부터 사용자의 상황정보와 Facebook에서 형성된 사용자 친구관계 정보를 수집하여 텐서 분해 및 결합을 기반으로 오프라인 환경에서 친구를 추천한다. 성능 평가를 위해 12명의 실험 참가자로부터 상황정보를 수집하고, 만족도를 평가하였다.

음향신호 기반 터널 돌발상황 검지시스템 (Acoustic Signal-Based Tunnel Incident Detection System)

  • 장진환
    • 한국ITS학회 논문지
    • /
    • 제18권5호
    • /
    • pp.112-125
    • /
    • 2019
  • 본 연구에서는 음향신호 처리기반 터널 돌발상황 탐지시스템을 개발하고 평가하였다. 개발 시스템은 알고리즘, 음향신호 수집기, 서버시스템 세 가지 구성 요소로 구성된다. 비음수 텐서 분해와 은닉 마코프 모델을 이용하여 돌발상황음(충돌, 스키드)을 검출한다. 개발시스템 성능은 제한된 환경과 실제 운영환경에서 평가되었다. 그 결과, 제한된 환경 평가에서 거리별로 80~95%의 검지성능을 보였고, 실제 운영환경에서는 94% 검지성능을 보였다. 기존의 터널 돌발상황 검지기술인 영상 및 루프검지기 기반 시스템 성능과 비교한 결과, 본 개발 기술의 장점은 신속한 검지시간(2초 이내)인 것으로 나타났다.