• Title/Summary/Keyword: Tensor Factorization

Search Result 15, Processing Time 0.031 seconds

Nonnegative Tucker Decomposition (텐서의 비음수 Tucker 분해)

  • Kim, Yong-Deok;Choi, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.296-300
    • /
    • 2008
  • Nonnegative tensor factorization(NTF) is a recent multiway(multilineal) extension of nonnegative matrix factorization(NMF), where nonnegativity constraints are imposed on the CANDECOMP/PARAFAC model. In this paper we consider the Tucker model with nonnegativity constraints and develop a new tensor factorization method, referred to as nonnegative Tucker decomposition (NTD). We derive multiplicative updating algorithms for various discrepancy measures: least square error function, I-divergence, and $\alpha$-divergence.

Vehicle Recognition using Non-negative Tensor Factorization (비음수 텐서 분해를 이용한 차량 인식)

  • Ban, Jae Min;Kang, Hyunchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.136-146
    • /
    • 2015
  • The active control of a vehicle based on vehicle recognition is one of key technologies for the intelligent vehicle, and the part-based image representation is necessary to recognize vehicles with only partial shapes of vehicles especially in urban scene where occlusions frequently occur. In this paper, we implemented a part-based image representation scheme using non-negative tensor factorization(NTF) and realized a robust vehicle recognition system using the NTF feature. The result shows that the proposed method gives more intuitive part-based representation and more robust recognition in urban scene.

A Probabilistic Tensor Factorization approach for Missing Data Inference in Mobile Crowd-Sensing

  • Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.63-72
    • /
    • 2021
  • Mobile crowd-sensing (MCS) is a promising sensing paradigm that leverages mobile users with smart devices to perform large-scale sensing tasks in order to provide services to specific applications in various domains. However, MCS sensing tasks may not always be successfully completed or timely completed for various reasons, such as accidentally leaving the tasks incomplete by the users, asynchronous transmission, or connection errors. This results in missing sensing data at specific locations and times, which can degrade the performance of the applications and lead to serious casualties. Therefore, in this paper, we propose a missing data inference approach, called missing data approximation with probabilistic tensor factorization (MDI-PTF), to approximate the missing values as closely as possible to the actual values while taking asynchronous data transmission time and different sensing locations of the mobile users into account. The proposed method first normalizes the data to limit the range of the possible values. Next, a probabilistic model of tensor factorization is formulated, and finally, the data are approximated using the gradient descent method. The performance of the proposed algorithm is verified by conducting simulations under various situations using different datasets.

Nonnegative Tensor Factorization for Continuous EEG Classification (연속적인 뇌파 분류를 위한 비음수 텐서 분해)

  • Lee, Hye-Kyoung;Kim, Yong-Deok;Cichocki, Andrzej;Choi, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.497-501
    • /
    • 2008
  • In this paper we present a method for continuous EEG classification, where we employ nonnegative tensor factorization (NTF) to determine discriminative spectral features and use the Viterbi algorithm to continuously classily multiple mental tasks. This is an extension of our previous work on the use of nonnegative matrix factorization (NMF) for EEG classification. Numerical experiments with two data sets in BCI competition, confirm the useful behavior of the method for continuous EEG classification.

Dual-Channel Acoustic Event Detection in Multisource Environments Using Nonnegative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해 및 은닉 마코프 모델을 이용한 다음향 환경에서의 이중 채널 음향 사건 검출)

  • Jeon, Kwang Myung;Kim, Hong Kook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.121-128
    • /
    • 2017
  • In this paper, we propose a dual-channel acoustic event detection (AED) method using nonnegative tensor factorization (NTF) and hidden Markov model (HMM) in order to improve detection accuracy of AED in multisource environments. The proposed method first detects multiple acoustic events by utilizing channel gains obtained from the NTF technique applied to dual-channel input signals. After that, an HMM-based likelihood ratio test is carried out to verify the detected events by using channel gains. The detection accuracy of the proposed method is measured by F-measures under 9 different multisource conditions. Then, it is also compared with those of conventional AED methods such as Gaussian mixture model and nonnegative matrix factorization. It is shown from the experiments that the proposed method outperforms the convectional methods under all the multisource conditions.

Recovering Incomplete Data using Tucker Model for Tensor with Low-n-rank

  • Thieu, Thao Nguyen;Yang, Hyung-Jeong;Vu, Tien Duong;Kim, Sun-Hee
    • International Journal of Contents
    • /
    • v.12 no.3
    • /
    • pp.22-28
    • /
    • 2016
  • Tensor with missing or incomplete values is a ubiquitous problem in various fields such as biomedical signal processing, image processing, and social network analysis. In this paper, we considered how to reconstruct a dataset with missing values by using tensor form which is called tensor completion process. We applied Tucker factorization to solve tensor completion which was built base on optimization problem. We formulated the optimization objective function using components of Tucker model after decomposing. The weighted least square matric contained only known values of the tensor with low rank in its modes. A first order optimization method, namely Nonlinear Conjugated Gradient, was applied to solve the optimization problem. We demonstrated the effectiveness of the proposed method in EEG signals with about 70% missing entries compared to other algorithms. The relative error was proposed to compare the difference between original tensor and the process output.

PARAFAC Tensor Reconstruction for Recommender System based on Apache Spark (아파치 스파크에서의 PARAFAC 분해 기반 텐서 재구성을 이용한 추천 시스템)

  • Im, Eo-Jin;Yong, Hwan-Seung
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • In recent years, there has been active research on a recommender system that considers three or more inputs in addition to users and goods, making it a multi-dimensional array, also known as a tensor. The main issue with using tensor is that there are a lot of missing values, making it sparse. In order to solve this, the tensor can be shrunk using the tensor decomposition algorithm into a lower dimensional array called a factor matrix. Then, the tensor is reconstructed by calculating factor matrices to fill original empty cells with predicted values. This is called tensor reconstruction. In this paper, we propose a user-based Top-K recommender system by normalized PARAFAC tensor reconstruction. This method involves factorization of a tensor into factor matrices and reconstructs the tensor again. Before decomposition, the original tensor is normalized based on each dimension to reduce overfitting. Using the real world dataset, this paper shows the processing of a large amount of data and implements a recommender system based on Apache Spark. In addition, this study has confirmed that the recommender performance is improved through normalization of the tensor.