• Title/Summary/Keyword: Tension load

Search Result 966, Processing Time 0.026 seconds

Strength of Anchors under Load Applied Angles (앵커볼트의 내력평가에 관한 실험적 연구)

  • Kim, Sung-Yong;Han, Duck-Jeon;Shin, Chang-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.69-76
    • /
    • 2005
  • The pull-out capacity of expansion anchor(heavy duty anchor and wedge anchor) was studied experimentally in this paper. Loading conditions included tension, shear, and combined tension and shear. The heavy duty anchor and wedge anchor were manufactured in domestic and installed In plain concrete. The failure mode of steel and concrete were studied carefully for the analytical formula of the anchorage design and the experimental data were compared with different models for the interaction of tension and shear capacities. Based on the research, the following conclusion may be drawn : The interaction of forces is well-described by an elliptical interaction relationship.

A Study on Out-of-Plane Bending Mechanism of Mooring Chains for Floating Offshore Plants (부유식 해양플랜트 계류 체인의 면외굽힘 거동에 대한 연구)

  • Lim, Yu-Chang;Kim, Kyung-Su;Choung, Joon-Mo;Kang, Chan-Hoe
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.580-588
    • /
    • 2010
  • OPB(out-of-plane bending)-induced failure of mooring chain was firstly addressed by CALM (catenary anchor leg mooring)-type offloading buoy, located approximately one mile away from the bow of the Girassol FPSO which was installed offshore area of Angola in September 2001. This study deals with verifying the load transfer mechanism between the first free chain link and connected two chain links inside the chain hawse. OPB moment to angle variation relationships are proposed by extensive parametric study where the used design variables are static friction coefficients, proof test loads, nominal tension forces, chain link diameters, chain link grades and chain link types. The stress ranges due to OPB moments are obtained using nonlinear FEAs (finite element analyses). Final stress ranges are derived considering ones from IPT (in-plane tension) forces. Also a formula for OPB fatigue assessment is briefly introduced.

Development of a self-centering tension-only brace for seismic protection of frame structures

  • Chi, Pei;Guo, Tong;Peng, Yang;Cao, Dafu;Dong, Jun
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.573-582
    • /
    • 2018
  • This study develops and numerically verifies an innovative seismically resilient bracing system. The proposed self-centering tension-only brace (SC-TOB) is composed of a tensioning system to provide a self-centering response, a frictional device for energy dissipation, and a high-strength steel cable as a bracing element. It is considered to be an improvement over the traditional self-centering braces in terms of lightness, high bearing capacity, load relief, and double-elongation capacity. In this paper, the mechanics of the system are first described. Governing equations deduced from the developed analytical model to predict the behavior of the system are then provided. The results from a finite element validation confirm that the SC-TOB performs as analytically predicted. Key parameters including the activation displacement and load, the self-centering parameter, and equivalent viscous damping are investigated, and their influences on the system behavior are discussed. Finally, a design procedure considering controlled softening behavior is developed and illustrated through a design example.

Fatigue Strength Evaluation of Mechanical Press Joints of Cold Rolled Steel Sheet under Cross-Tension Loading (냉간압연강 판재 기계적 접합부의 십자형 인장 하중하에서의 피로강도)

  • Kim, Jong-Bong;Kim, Taek-Young;Kang, Se-Hyung;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, for the evaluation of the static and fatigue joining strength of the joint, the geometry of the cross-tension specimen was adopted. The specimens were produced with optimal joining force and fatigue life of the clinch joint specimens was evaluated. The material selected for use in this study was cold rolled mild steel (SPCC) with a thickness of 0.8 mm. The maximum tensile load was 708 N for the specimen with single point. The fatigue endurance limit (=42.6 N) per point approached to 6% of the maximum tensile strength at a load ratio of 0.1, suggesting that the joints are vulnerable to cross-tension loading during fatigue. Compared to equivalent stress and maximum principal stress, the SWT fatigue parameter and equivalent strain can properly predict the current experimental fatigue life. The SWT parameter can be expressed as $SWT=2497.5N^{-0.552)_f$.

A Study on the Bond Behavior of Reinforced Concrete Beam (철근(鐵筋)콘크리트 보의 부착거동(附着擧動)에 관한 연구(硏究))

  • Lee, Bong-Hak;Hong, Chang-Woo;Lee, Joo-Hyung;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.87-95
    • /
    • 1998
  • Cracking is considered to be one of the important factors in determining the durability of reinforced concrete structures. When the bending stress exceeds the modulus of rupture of the concrete, cracking form along the length of members. The total load is transferred across these cracks by the reinforcement, but the concrete between cracks is still capable of carrying stresses due to the bond between steel and concrete. This phenomenon is called the tension stiffening effect. The tension stiffening effect is affected by many variables, such as the bond stress, strength of concrete, interrocking of aggregate, type of steel, and dowel action of steel. Also, this tension stiffening effect is usually quite significant in beams under service loading, and must be taken into account in the calculation of deflection and crack widths. In this study, the experiment was carried out on types of specimen, strength of concrete, and steel ratio and finite element analysis were compared in terms of load-deflection relationship, crack pattern.

  • PDF

Effects by the Magnitude of Shear Load on the Formation and Propagation of Mode II Branch Cracks (전단하중의 크기가 모드 II 분기균열의 형성과 전파에 미치는 영향)

  • 이정무;송삼홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.487-490
    • /
    • 2004
  • In this paper, we investigated the characteristics of initiation and propagation behavior for fatigue crack observed by changing various shapes of initial crack and magnitudes of loading in modified compact tension shear(CTS) specimen subjected to shear loading. In the low-loading condition, the secondary fatigue crack was created in the notch root due to friction on the pre-crack face grew to a main crack. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Influenced by the shear loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. The propagation path of fatigue crack under the Mode II loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

Limit load analyses of weld-center cracked plates under tension (용접부 중앙에 균열이 존재하는 인장 평판에 대한 한계하중 해석)

  • Song, Tae-Kwang;Kim, Yun-Jae;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1830-1835
    • /
    • 2007
  • In the present work, the effect of strength mismatch on plastic limit loads is quantified for strength-mismatched plates with constant-depth surface cracks under tension, via three-dimensional, small strain elastic-perfectly plastic finite element analyses. Relevant variables related to plate and crack geometries are systematically varied, in addition to the weld width. An important finding is that a parameter related to the weld width-to-ligament ratio is proposed, based on which limit loads can be uniquely quantified. The proposed limit load solutions is a valuable input to estimate nonlinear fracture mechanics parameters based on the reference stress approach.

  • PDF

Extension of a cable in the presence of dry friction

  • Huang, Xiaolun;Vinogradov, Oleg G.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.313-329
    • /
    • 1996
  • A mathematical model of a cable as a system of interacting wires with interwire friction taken into account is presented in this paper. The effect of friction forces and the interwire slip on the mechanical properties of tension cables is investigated. It is shown that the slip occurs due to the twisting and bending deformations of wires, and it occurs in the form of micro-slips at the contact patches and macro-slips along the cable. The latter slipping starts near the terminals and propagates towards the middle of the cable with the increase of tension, and its propagation is proportional to the load. As the result of dry friction, the load-elongation characteristics of the cable become quadratic. The energy losses during the extension are shown to be proportional to the cube of the load and in inverse proportion to the friction force, a result qualitatively similar to that for lap joints. Presented examples show that the model is in qualitative agreement with the known experimental data.

Evaluation and Improvement of Structural Performance of Reinforced Shear Walls Under Load Reversals (철근콘크리트 내진벽의 구조성능 평가 및 개선)

  • 신종학;하기주;안준석;주정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.683-688
    • /
    • 1999
  • The purpose of this study is to develop and evaluate the structural performance of various shear walls, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crashing due to slippage prevention of boundary region and reduction of diagonal tension rather than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by 1.14 times and 1.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF

Temperature and Load Change behavior of Overhead Conductor under loading current due to Forest Fire (통전 중 산불에 노출된 가공송전선의 온도 및 장력 변화 거동)

  • Kim, Byung-Geol;Jang, Young-Ho;Kim, Shang-Shu;Han, Se-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.366-371
    • /
    • 2009
  • The authors have published several technical reports on the deterioration of conductor due to forest fire in series so far. This is because even we have been experiencing hundreds of forest fires every year, no systematic research on conductor which is very vulnerable to fire have been fulfilled. This paper describes the sag-tension behavior of conductor under loading current normally when only partial area of a long conductor is exposed to fire. Temperatures of Overhead Conductor were different with measurement position. When the partial area of conductor was heated up to $500^{\circ}C$, 20 % of permanent tension loss was observed. This results in the increase of sag of 1.5 m when span is 300 m. The other results will be presented in the text.