• Title/Summary/Keyword: Tension leg

Search Result 99, Processing Time 0.021 seconds

Fatigue reliability analysis of welded joints of a TLP tether system

  • Amanullah, M.;Siddiqui, N.A.;Umar, A.;Abbas, H.
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.331-354
    • /
    • 2002
  • Tethers of Tension Leg Platform (TLP) are a series structural system where fatigue is the principal mode of failure. The present study is devoted to the fatigue and fatigue fracture reliability study of these tethers. For this purpose, two limit state functions have been derived. These limit state functions are based on S-N curve and fracture mechanics approaches. A detailed methodology for the reliability analysis has then been presented. A sensitivity analysis has been carried out to study the influence of various random variables on tether reliability. The design point, important for probabilistic design, is located on the failure surface. Effect of wind, water depth, service life and number of welded joints are investigated. The effect of uncertainties in various random variables on tether fatigue reliability is highlighted.

Hydroelastic Response Analysis of TLPs in Regular Waves (규칙파 중 TLP의 유탄성응답 해석)

  • Ha, Y.R.;Lee, S.C.;Goo, J.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.48-54
    • /
    • 2010
  • An improved numerical scheme, to which the hydroelastic method is adapted, is introduced for predicting the motion and structural responses of tension leg platforms(TLPs) in regular waves. The numerical approach in this work is based on a combination of the three dimensional source distribution method and the finite element method. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural response analysis. The drag forces on the submerged slender members, which are proportional to the square of relative velocity, are included in order to estimate the responses of members with better accuracy. Comparisons with other results verify the works in this paper.

Dynamic Response Characteristics of Tension Leg Platforms with Flexibility Variations in Waves (굽힘강성 변화에 따른 인장계류식 해양구조물의 동적응답 특성)

  • Lee, Chang-Ho;Choi, Chan-Moon;Hong, Bong ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.2
    • /
    • pp.191-204
    • /
    • 1996
  • The dynamic response characteristics with flexibility variations are examined for presenting the basic data for design of Tension Leg Platforms(TLPs)in waves. A numerical approach is based on the dynamic response analysis theory, in which the superstructure of TLPs is assumed flexible instead of the rigid body assumption used in two-step analysis method. The hydrodynamic interactions among TLP members, such as columns and pontoons are not included in the motion and structural analyse. The equations of motion of a whole structure are formulated using element-fixed coordinate systems which have the origin at the node of the each hull element.

  • PDF

Study on Effective Arrangement of Mooring Lines of Floating-Type Combined Renewable Energy Platform (부유식 복합 재생에너지 플랫폼 계류선의 효과적 배치에 관한 연구)

  • Choung, Joonmo;Jeon, Gi-Young;Kim, Yooil
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.22-32
    • /
    • 2013
  • This paper presents the conceptual design procedure for the taut-leg mooring lines of a floating-type combined renewable energy platform. The basic configuration of the platform is determined based on an understanding of floating offshore plants. The main dimensions and mass distribution are determined based on a hydrostatic calculation. To identify the motion history of the floating platform and the tension history of the mooring lines, a hydrodynamic analysis is executed using Ansys.Aqwa. This helps in the selection of the best configuration for the mooring system such as the number of mooring lines, wire types, anchored positions, etc. In addition, the fatigue life of the mooring lines can be predicted from the tension history using the rain-flow cycle counting method.

Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model

  • Waris, Muhammad Bilal;Ishihara, Takeshi
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.247-268
    • /
    • 2012
  • A finite element model is developed for dynamic response prediction of floating offshore wind turbine systems considering coupling of wind turbine, floater and mooring system. The model employs Morison's equation with Srinivasan's model for hydrodynamic force and a non-hydrostatic model for restoring force. It is observed that for estimation of restoring force of a small floater, simple hydrostatic model underestimates the heave response after the resonance peak, while non-hydrostatic model shows good agreement with experiment. The developed model is used to discuss influence of heave plates and modeling of mooring system on floater response. Heave plates are found to influence heave response by shifting the resonance peak to longer period, while response after resonance is unaffected. The applicability of simplified linear modeling of mooring system is investigated using nonlinear model for Catenary and Tension Legged mooring. The linear model is found to provide good agreement with nonlinear model for Tension Leg mooring while it overestimates the surge response for Catenary mooring system. Floater response characteristics under different wave directions for the two types of mooring system are similar in all six modes but heave, pitch and roll amplitudes is negligible in tension leg due to high restraint. The reduced amplitude shall lead to reduction in wind turbine loads.

Reliability of TLP tethers under extreme tensions

  • Siddiqui, N.A.;Ahmad, Suhail
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.317-326
    • /
    • 2003
  • The tension leg platform (TLP) is a moored floating offshore structure whose buoyancy is more than its weight. The mooring system, known as tethers, is vulnerable to failure due to extreme (maximum and minimum) tensions. In the present study the reliability of these tethers under maximum and minimum tension (ultimate limit state) has been studied. Von-Mises failure criteria has been adopted to define the failure of a tether against maximum tension. The minimum tension failure criteria has been assumed to meet when the tethers slack due to loss of tension. First Order Reliability method (FORM) has been adopted for reliability assessment. The reliability, in terms of reliability index, and probability of failure has been obtained for twelve sea states. The probabilities of failure so obtained for different sea states have been adopted for the calculation of annual and life time probabilities of failure.

A Study on the Analysis of Multi-let Spread Mooring Systems (다점지지 계류시스템의 정적해석에 대한 연구)

  • Sin, Hyeon-Gyeong;Kim, Deok-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.53-60
    • /
    • 1995
  • A multi-leg spread mooring system for floating offshore structures is important, but the multi-leg static analysis is complicated due to the nonlinear behavior of each line and the effect of current which affects each line differently. The pretensioned position of the multi-leg mooring system obtained from the static equilibrium condition changes into a different position due to external loads and current. In this paper, the new position and the static tension at each line are caculated. The relation between the initial static equilibrium position and the new position due to the external loads is expressed in terms of the Taylor's series expansion. The Runge-Kutta $4^{th}$ method is employed in analyzing the 3-dimensional static cable nonlinear equations.

  • PDF

Response of square tension leg platforms to hydrodynamic forces

  • Abou-Rayan, A.M.;Seleemah, Ayman A.;El-Gamal, Amr R.
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.115-135
    • /
    • 2012
  • The very low natural frequencies of tension leg platforms (TLP's) have raised the concern about the significance of the action of hydrodynamic wave forces on the response of such platforms. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that coupling between various degrees of freedom has insignificant effect on the displacement responses. Moreover, for short wave periods (i.e., less than 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on the wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about its original position. Also, for short wave periods, a higher mode contribution to the pitch response accompanied by period doubling appeared to take place. For long wave periods, (12.5 and 15 sec.), this higher mode contribution vanished after very few cycles.

Analysis of the Wave Exciting Forces and Steady Drift Forces on a Tension Leg Platform in Multi-directional Irregular Waves (Frequency Domain Analysis) (다방향 불규칙파중의 인장계류식 해양구조물에 작용하는 파강제력 및 정상표류력 해석(주파수영역 해석))

  • 이창호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.35-44
    • /
    • 2001
  • A numerical procedure is described for simultaneously predicting the wave exciting forces and drift forces on a Tension Leg Platform (TLP) in multi-directional irregular waves. The numerical approach is based on a three dimensional source distribution method to the wave exciting forces, a far-field method to the steady drift forces and a spectral analysis technique of directional waves. The spectral description for the linear system of TLP in the frequency domain is sufficient to completely define the wave exciting forces and steady drift forces. This is because both the wave inputs and the outputs are stationary Gaussian random process of which the statistical properties in the amplitude domain are well known. Numerical results of steady drift forces are compared with the experimental and numerical ones, which are obtained in the literature. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Numerical Study on Wave-Induced Motion Response of Tension Leg Platform in Waves (모리슨 항력을 고려한 파랑 중 TLP 거동 특성 연구)

  • Cho, Yoon Sang;Nam, Bo Woo;Hong, Sa Young;Kim, Jin Ha;Kim, Hyun Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.508-516
    • /
    • 2014
  • A numerical method to investigate the non-linear motion characteristics of a TLP is established. A time domain simulation that includes the memory effect using the convolution integral is used to consider the transient effect of TLP motion. The hydrodynamic coefficients and wave force are calculated using a potential flow model based on the HOBEM(higher order boundary element method). The viscous drag force acting on the platform and tendons is also considered by using Morison’s drag. The results of the present numerical method are compared with experimental data. The focus is the nonlinear effect due to the viscous drag force on the TLP motion. The ringing, springing, and drift motion are due to the drag force based on Morison's formula.