• 제목/요약/키워드: Tension Monitoring

검색결과 151건 처리시간 0.022초

Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique

  • Kim, Jeong-Tae;Nguyen, Khac-Duy;Huynh, Thanh-Canh
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.381-397
    • /
    • 2013
  • In this paper, wireless health monitoring of stay cables using piezoelectric strain sensors and a smart skin technique is presented. For the cables, tension forces are estimated to examine their health status from vibration features with consideration of temperature effects. The following approaches are implemented to achieve the objective. Firstly, the tension force estimation utilizing the piezoelectric sensor-embedded smart skin is presented. A temperature correlation model to recalculate the tension force at a temperature of interest is designed by correlating the change in cable's dynamic features and temperature variation. Secondly, the wireless health monitoring system for stay cables is described. A piezoelectric strain sensor node and a tension force monitoring software which is embedded in the sensor are designed. Finally, the feasibility of the proposed monitoring technique is evaluated on stay cables of the Hwamyung Grand Bridge in Busan, Korea.

Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges

  • Yim, Jinsuk;Wang, Ming L.;Shin, Sung Woo;Yun, Chung-Bang;Jung, Hyung-Jo;Kim, Jeong-Tae;Eem, Seung-Hyun
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.465-482
    • /
    • 2013
  • Recently, a novel stress sensor, which utilizes the elasto-magnetic (EM) effect of ferromagnetic materials, has been developed to measure stress in steel cables and wires. In this study, the effectiveness of this EM based stress sensors for monitoring of the cable tension force of a real scale cable-stayed bridge was investigated. Two EM stress sensors were installed on two selected multi-strand cables in Hwa-Myung Bridge, Busan, South Korea. Conventional lift-off test was conducted to obtain reference cable tension forces of two test cables. The reference forces were used to calibrate and validate cable tension force measurements from the EM sensors. Tension force variations of two test cables during the second tensioning work on Hwa-Myung Bridge were monitored using the EM sensors. Numerical simulations were conducted to compare and verify the monitoring results. Based on the results, the effectiveness of EM sensors for accurate field monitoring of the cable tension force of cable-stayed bridge is discussed.

고출력 레이저 치료를 통한 근강직 완화의 실시간 모니터링 연구 (Development of Real-time Monitoring System for Muscle Tension by High Intensity Laser Therapy)

  • 홍정선;윤종인
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권3호
    • /
    • pp.128-134
    • /
    • 2012
  • Currently, high-intensity laser therapy (HILT) is increasingly used in various muscle disorders like muscle tension. Our proposed study includes the development of the real-time monitoring system using a myotonometer for HILT. The developed system consists of a piezoelectric sensor and laser distance sensor for muscle stiffness monitoring during the treatments. The results demonstrated that the level of muscle tension was rapidly decreased after 3 minutes of the high-intensity laser treatment when compared to the control group. The combined HILT and realtime muscle tension monitoring system may help to evaluate the therapeutic procedure and efficient treatments for various muscle pains.

Force monitoring of Galfan cables in a long-span cable-truss string-support system based on the magnetic flux method

  • Yuxin Zhang;Xiang Tian;Juwei Xia;Hexin Zhang
    • Structural Monitoring and Maintenance
    • /
    • 제10권3호
    • /
    • pp.261-281
    • /
    • 2023
  • Magnetic flux sensors are commonly used in monitoring the cable force, but the application of the sensors in large diameter non-closed Galfan cables, as those adopted in Yueqing Gymnasium which is located in Yueqing City, Zhejiang Province, China and is the largest span hybrid space structure in the world, is seldom done in engineering. Based on the construction of Yueqing Gymnasium, this paper studies the cable tension monitoring using the magnetic flux method across two stages, namely, the pre-calibration stage before the cable leaves the rigging factory and the field tension formation stage of the cable system. In the pre-calibration stage in the cable factory, a series of 1:1 full-scale comparative tests were carried out to study the feasibility and relability of this kind of monitoring method, and the influence on the monitoring results of charging and discharging voltage, sensor location, cable diameter and fitting method were also studied. Some meaningful conclusions were obtained. On this basis, the real-time cable tension monitoring system of the structure based on the magnetic flux method is established. During the construction process, the monitoring results of the cables are in good agreement with the data of the on-site pressure gauge.The work of this paper will provide a useful reference for cable force monitoring in the construction process of long-span spatial structures.

TENSION LEVELLER 상태감시 및 진단시스템 개발 (Development of Tension Leveller Condition Monitoring and Diagnosis System)

  • 신남호;김수광;최석욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.350-354
    • /
    • 1995
  • The Tension Leveller of Cold Rolling Mill In POSCO performs levelling the strip in high speed line. But minor variations in operating condition of driving machines such as motor, gear box, and support bearings, a small gap-variation of supporter and strip slip by poor roll revolutions can cause serious problems in the quality of strip. In this study, firstly, A condition monitoring standard for each sensor is made through with the detail analysis of vibration and strip slip. Secondly, An automatic monitoring and diagnosing system was developed to monitor the condition of Tension Leveller, and diagnose the cause of abnormal condition. Finally, A diagnosing algorithm for abnormal condition and man-machine interface (MMI) for easy operation are developed.

  • PDF

Evaluation of Muscle Tension in Hemiplegia Patients with a Real-time Monitoring System during High Intensity Laser Therapy

  • Lee, Sang-Kwan;Lee, Hyeong-O;Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • 제19권3호
    • /
    • pp.277-283
    • /
    • 2015
  • In this study, we evaluated the muscle tension in hemiplegia patients using a real-time monitoring system combined with high-intensity laser treatment (HILT) device. Five hemiplegia patients were treated with HILT in the left forearm muscle for 8 minutes, and the muscle was relaxed for 8 minutes following the treatment. Both the gradient of the force-displacement curves and the muscle hardness decreased during the therapy, and the effects were maintained following the treatment. The results show that muscle tension decreased rapidly during laser irradiation, and the efficacy of the treatment depended on the duration of the illness. Consequently, we conclude that this combined HILT and real-time muscle tension monitoring system is useful for evaluating the therapeutic procedure and for treatment of muscle pain.

궤도차량의 직진주행시 궤도장력 감지 (Track Tension Monitoring in the Longitudinal Traveling of Tracked Vehicles)

  • 허건수;조병희;서문석;서일성;박동창
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1608-1615
    • /
    • 2000
  • The track tension is closely related to the maneuverability of tracked vehicles and the durability of tracks and suspension systems. In order to minimize the excessive load on the tracks and to pre vent the peal-off of tracks from the road wheels, it is required to maintain the optimum track tension throughout the maneuver. However, the track tension cannot be easily measured due to the limitation in the sensor technology, harsh environment, etc. In this paper an indirect track tension monitoring system is developed based on idler assembly models, a geometric relation around the idler, and the tractive force estimated by using the Extended Kalman Filter. The performance of the tension monitoring system is verified with the results obtained from the Multi-Body Dynamics model.

Application of magnetoelastic stress sensors in large steel cables

  • Wang, Guodun;Wang, Ming L.;Zhao, Yang;Chen, Yong;Sun, Bingnan
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.155-169
    • /
    • 2006
  • In this paper, the application of magnetoelasticity in static tension monitoring for large steel cables is discussed. Magnetoelastic (EM) stress sensors make contact-free tension monitoring possible for hanger cables and post-tensioned cables on suspension and cable-stayed bridges. By quantifying the correlation of magnetic relative permeability with tension and temperature, the EM sensors inspect the load levels in the steel cables. Cable tension monitoring on Qiangjiang (QJ) 4th Bridge demonstrates the reliability of the EM sensors.

신뢰성에 기초한 사장교 케이블 장력 관리기준치 설정 (Reliability-Based Managing Criteria for Cable Tension Force in Cable-stayed Bridges)

  • 조효남;강경구;차철준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권3호
    • /
    • pp.129-138
    • /
    • 2005
  • 본 논문은 사장교에서 모니터링 시스템을 통해 획득한 가속도 자료를 이용하여 케이블 관리기준 장력을 결정하기 위한 방법을 제시한다. 현재 한국의 많은 장대교량에 모니터링 시스템이 설치되어 있다. 모니터링 시스템은 교량의 이상현상이나 손상을 진단하고 관리주체에 경고하기 위해 설치된다. 사장교에 있어서는 그 기하학적인 형상 때문에 케이블 장력이 교량 이상징후의 중요한 지시가 될 수 있다. 만약 케이블 장력관리치가 너무 높거나 또는 너무 낮게 설정되면, 모니터링 시스템은 교량의 이상징후를 적절하게 경고하지 못할 것이다. 일반적으로, 관리치는 경험이나 공학적 판단에 의해 결정된다. 그러나 본 논문에서는 케이블 장력에 대한 확률분포모형과 신뢰성 해석에 기초한 새로운 케이블 장력관리치 설정에 대한 방법을 제시한다. 제안된 방법은 적용성 검토를 위하여 실제 콘크리트 사장교에 적용되었다.

궤도차량의 동적 궤도장력 조절시스템 개발 (Development of a Dynamic Track Tensioning System in Tracked Vehicles)

  • 서문석;허건수;홍대건;이춘호;최필환
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1678-1683
    • /
    • 2001
  • The mobility of tracked vehicles is mainly influenced by the interaction between tracks and soil, so that the characteristics of their interactions are quite important fur the tracked vehicle study. In particular, the track tension is closely related to the maneuverability of tracked vehicles and the durability of tracks and suspension systems. In order to minimize the excessive load on the tracks and to prevent the peal-off of tracks from the road-wheels, the Dynamic Track Tensioning System (DTTS) which maintains the optimum track tension throughout the maneuver is required. It consists of track tension monitoring system, track tension controller and hydraulic system. In this paper, a dynamic track tensioning system is developed for tracked vehicles which are subject to various maneuvering tasks. The track tension is estimated based on the idler assembly model. Using the monitored track tension and con sidering the highly nonlinear hydraulic units, fuzzy logic controllers are designed in order to control the track tension. The track tensioning performance of the proposed DTTS is verified through the simulation of the Multi -body Dynamics tool.