• Title/Summary/Keyword: Tensile test specimen

Search Result 690, Processing Time 0.024 seconds

Fatigue Behavior of Offshore Topside Structure (상부 해양 요소 접합부의 피로 평가)

  • Im, Sung-Woo;Park, Kwan-Kyu;Park, Ro-Sik;Cho, Won-Chul;Jo, Chul-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.88-92
    • /
    • 2006
  • Large-scale model tests of welded topside joints were carried out to observe the fatigue behavior of API 2W Gr.50 steel produced by POSCO. The fatigue crack behaviors for various loading conditions were measured and investigated around the critical joint sections. The experimental results have been verified with numerical approaches and also compared with the AWS D1.1 and DnV RP-C203 design curves. The large-scale experiment models were fabricated, based on the actual operating east area fixed platform. The dimensions of the models were slightly modified to accommodate the test facilities and capacities. The fatigue test was carried out having ${\Delta}Q$ of T1=705.6kN, T2=749.7kN and T3=793.8kN. The three specimens were statically loaded 20 times, with various loadings of about 50kN intervalsbetween the maximum and minimum loads required in the fatigue tests. This loading removed the residual stress in the specimen before the fatigue tests. The topside joint crack was initiated from the brace heel, where the maximum tensile stress occurred. The API 2W Gr.50 steel satisfied the AWS D1.1 detail category C and DnV RP-C203 detail category F ${\Delta}S-N$ curve.

Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)

  • Ahangarnazhad, Bita Hosseinian;Pourbaba, Masoud;Afkar, Amir
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.463-474
    • /
    • 2020
  • In this paper, the influence of adding multi-walled carbon nanotube (MWCNT) on the pull behavior of steel and GFRP bars in ultra-high-performance concrete (UHPC) was examined experimentally and numerically. For numerical analysis, 3D nonlinear finite element modeling (FEM) with the help of ABAQUS software was used. Mechanical properties of the specimens, including Young's modulus, tensile strength and compressive strength, were extracted from the experimental results of the tests performed on standard cube specimens and for different values of weight percent of MWCNTs. In order to consider more realistic assumptions, the bond between concrete and bar was simulated using adhesive surfaces and Cohesive Zone Model (CZM), whose parameters were obtained by calibrating the results of the finite element model with the experimental results of pullout tests. The accuracy of the results of the finite element model was proved with conducting the pullout experimental test which showed high accuracy of the proposed model. Then, the effect of different parameters such as the material of bar, the diameter of the bar, as well as the weight percent of MWCNT on the bond behavior of bar and UHPC were studied. The results suggest that modifying UHPC with MWCNT improves bond strength between concrete and bar. In MWCNT per 0.01 and 0.3 wt% of MWCNT, the maximum pullout strength of steel bar with a diameter of 16 mm increased by 52.5% and 58.7% compared to the control specimen (UHPC without nanoparticle). Also, this increase in GFRP bars with a diameter of 16 mm was 34.3% and 45%.

Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron II - Silicon and Molybdenum (구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 II-Si, Mo)

  • Bang, Woong-Ho;Kang, Choon-Sik;Park, Jae-Hyun;Kweon, Young-Gak
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.240-246
    • /
    • 2000
  • Surface layer properties such as composition, phase, hardness, and oxide layer condition are very important if the main failure mechanism of metals is wear. Generally, stable and dense oxide layers are known to decrease the wear rate of metals by prohibition of metallic junction occurred between bare metals. Addition of Si above 4 wt% to DCI(Ductile Cast Iron) is reported to enhance the significant oxidation resistance by forming the silicon-rich surface layer which inhibits further oxidation. And addition of up to 2 wt% Mo to high Si ductile iron produces significant increases in high temperature tensile strength, creep strength, thermal fatigue resistance and oxidation resistance. High pressure wear characteristics of unalloyed DCI(Ductile cast Iron), 4.46 wt% Si ductile iron, 4.3 wt% Si-0.52 wt% Mo ductile iron were investigated through unlubricated pin-on-disc wear test. Wear test was carried out at speed of 23m/min, under pressure of 3 MPa and 3.3 MPa. Wear surfaces of each specimen were observed by SEM to determine the wear mechanism under high pressure wear condition. Addition of Si 4.46 wt% severely deteriorated wear property of ductile iron compared to unalloyed DCI. But combined addition of Si 4.3 wt%andMo0.52wt%decreasedthefrictioncoefficient(${\mu}$)ofductileironsandremarkablydelayedthemild-severeweartransition.

  • PDF

Experimental Testing of Curved Aluminum Honeycomb/CFRP Sandwich Panels (곡면형상의 알루미늄 하니콤/CFRP 샌드위치 패널에 관한 실험적 연구)

  • Roy, Rene;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • This paper presents the fabrication and 3-point flexion testing of carbon fiber reinforced polymer (CFRP) composite face/aluminum honeycomb core sandwich panels. Specimen sandwich panels were fabricated with three honeycomb types (3.18 mm, 4.76 mm, and 6.35 mm cell size) and three panel radii (flat, r = 1.6 m, r = 1.3 m). The curved sandwiches were fabricated normally with the core in the W-direction. The tensile mechanical properties of the CFRP $2{\times}2$ twill fabric face laminate were evaluated (modulus, strength, Poisson's ratio). The measured values are comparable to other CFRP fabric laminates. The flat sandwich 3-point flexion test core shear strength results were 11-30% lower than the manufacturer published data; the test set-up used may be the cause. With a limited sample size, the 1.3 meter panel curvature appeared to cause a 0.8-3.8% reduction in ultimate core shear strength compared to a flat panel.

THE EFFECT OF HYBRID LAYER THICKNESS ON MICROTENSILE BOND STRENGTH OF THREE-STEP AND SELF-ETCHING DENTIN ADHESIVE SYSTEMS (혼성층의 두께가 three-step과 self-etching 상아질 접착제의 미세인장결합강도에 미치는 효과)

  • Lee, Hye-Jung;Park, Jeong-Kil;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.491-497
    • /
    • 2003
  • The purpose of this study was to evaluate the correlation between hybrid layer thickness and bond strength using confocal laser scanning microscope and microtensile bond strength test of two adhesive systems. The dentin surface of human molars. sectioned to remove the enamel from the occlusal surface. Either Scotchbond Multi-Purpose(3M Dental Product, St. Paul, MN, U.S.A) or Clearfil SE Bond (Kuraray, Osaka, Japan) was bonded to the surface. and covered with resin-composite. The resin-bonded teeth were serially sliced perpendicular to the adhesive interface to measure the hybrid layer thickness by confocal laser scanning microscope. The specimen were trimmed to give a bonded cross-sectional surface area of $1\textrm{mm}^2$, then the micro-tensile bone test was performed at a cross head speed of 1.0 mm/min. All fractured surfaces were also observed by stereomicroscope. There was no significant differences in bond strengths the materials(p>0.05). However. the hybrid layers of three-step dentin adhesive system, SM, had significantly thicker than self-etching adhesive system. CS(p<0.05). Pearson's correlation coefficient showed no correlation between hybrid layer thickness and bond strengths(p>0.05). Bond strengths of dentin adhesive systems were not dependent on the thickness of hybrid layer.

A Study on Microstructure and Mechanical Properties of IF Steel Cube Fabricated by Multi-Axial Diagonal Forging Ver.1 and Ver.2 Processes (다축대각단조(MADF) Ver.1 및 Ver.2 공정으로 가공한 IF Steel의 미세조직 및 기계적 성질에 대한 연구)

  • Jeong, D.H.;Jo, Y.Y.;Kwon, S.C.;Kim, S.T.;Lee, S.;Choi, S.H.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.306-310
    • /
    • 2021
  • In this study, IF steel, which has a body-centered cubic (BCC) crystal structure, was fabricated as a 25 mm-long cube, and then processed for one cycle without intermediate heat treatment by applying MADF Ver.1 and Ver.2 processes. MADF processing was performed with graphite lubrication for each pass at room temperature. The development of the microstructure and texture was analyzed and compared by the location of the specimen using EBSD measurements of the IF steel. Vickers hardness test and miniature tensile test were also performed to analyze the mechanical properties. The coarse grain size of 742.6 ㎛ of the as-received IF steel was refined to a grain size of 53.0 ㎛ after one cycle of MADF Ver.1 processing and 27.0 ㎛ after MADF Ver.2 processing. Vicker's hardness of the as-received IF steel at 94 Hv was increased to 185.6 Hv and 191.2 Hv after one cycle of MADF Ver.1 and Ver.2 processing, respectively.

A Study on the Thermal Analysis of the Valve in the Selective Catalytic Reduction(SCR) System (선택적 환원촉매장치(SCR)에서 밸브의 열해석에 관한 연구)

  • Choi, Jae-Wook;Kwag, Dong-Gi
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.153-158
    • /
    • 2019
  • The overall environmental regulations of the industry have been strengthened due to environmental pollution that occurred in modern society. Therefore, R&D of selective reduction catalyst (SCR) is needed to meet these environmental regulations. This paper carried out thermal analysis to develop the pneumatic damper valve (PDV), which is a key component of SCR system. For thermal analysis, verification of material properties was performed first. Verification was performed through the thermal properties test and the thermal tensile test of the specimen, and the results were reinforced with the material properties to enhance the reliability of the thermal analysis.The heat analysis was intended to identify thermal characteristics with PDV in total of three materials (SM400B, SS275, SB410) applied under the conditions of use of PDV, and to confirm the structural stability of the PDV.

Reversed Cyclic Loading Test of Post-Tensioned Precast Concrete Beam-Column Connections with 2400MPa Prestressing Strands (2400MPa 긴장재가 적용된 포스트텐션 프리캐스트 콘크리트 보-기둥 접합부의 반복가력실험)

  • Hwang, Jin-Ha;Choi, Seung-Ho;Lee, Deuck Hang;Kim, Kang Su;Woo, Woon Tack
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.45-52
    • /
    • 2017
  • The precast concrete (PC) method has many advantages in fast construction, quality control, etc. In domestic construction market, however, its application has been quite limited because of the concerns about structural integrity and seismic performances due to the discrete connections between precast concrete members. By applying the post-tensioning method, the precast beam-column connection can be well tightened, allowing improved structural integrity, and proper seismic performances can be also achieved. In this study, reversed cyclic tests have been conducted on the beam-column connection specimens, where the test variables included the compressive strength of grouting mortar and the tensile strengths of prestressing strands, based on which their seismic performances have been examined in detail. The post-tensioned PC beam-column connections showed good seismic performances comparable to that of the monolithic reinforced concrete connection specimen. When 2400 MPa prestressing strands are applied to the beam-column connection, it is preferable to adjust the prestress level similar to that applied for the 1860 MPa prestressing strands to avoid premature local crushing failures at the beam-column connections.

Post-tensioning System with Externally Bonded CFRP Strips for Strengthening RC Members (RC 부재의 휨 보강을 위한 외부 부착형 탄소섬유판 포스트텐션 시스템)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.155-163
    • /
    • 2008
  • Experimental study has been performed in order to investigate the behavior of RC beams strengthened with externally bonded post-tensioned CFRP (Carbon Fiber Reinforced Polymer) strips. Specimens consist of 9 small-scaled specimens with the different post-tensioning level as a main test parameter. A control specimen and specimens with simply bonded CFRP strips have been manufactured to compare the structural performances of prestressed system. From the test results, it was observed that the specimens strengthened with simply bonded CFRP strips showed debonding failure below 50% of CFRP tensile strength due to premature debonding. On the other hand, all the specimens strengthened with post- tensioned CFRP strips reached the rupture strength of the CFRP strip. The cracking and yielding loads were also increased proportionally to the post-tensioning level, but the ultimate loads were nearly equal regardless of the post-tensioning level.

Post-tensioning System with Externally Unbonded CFRP Strips for Strengthening RC Members (RC 부재의 휨 보강을 위한 외부 비부착형 탄소섬유판 포스트텐션 시스템)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.147-154
    • /
    • 2008
  • Experimental study has been performed in order to investigate the behavior of RC beams strengthened with externally unbonded post-tensioned CFRP (Carbon Fiber Reinforced Polymer) strips using embedded or stud-type plate anchorages. Total 10 small-scaled specimens were manufactured with the different post-tensioning level and types of mechanical anchorage as a main test parameter. A control specimen and specimens with simply bonded CFRP strips were included to compare the structural performances of each system. From the test results, it was observed that the specimens strengthened with simply bonded CFRP strips showed debonding failure below 50% of CFRP tensile strength due to premature debonding. On the other hand, all the specimens strengthened with post- tensioned unbonded CFRP strips reached the rupture strength of the CFRP strip. Also, it was observed that the specimens with stud-type anchorage have equivalent strengthening performance compared with embedded-type anchorage.