• Title/Summary/Keyword: Tensile shear fracture load

Search Result 62, Processing Time 0.029 seconds

The Effects of Welding Clearance and bending moment on Spot Weldability (점용접 간극과 굽힘 모멘트가 용접성에 미치는 영향)

  • Lim, Jae-Kyoo;Song, Jun-Hee;Kuk, Jung-Ha;Yang, Seung-Hyon
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.55-60
    • /
    • 2001
  • The automobile is made up of thousands of parts. Some parts are formed by pressing and combined by spot welding. To find weldability conditions of spot welding, clearance between two welding plates was made and after spot welding, weldability is evaluated by means of tensile shear load, nugget size and shape. Specimen used in this study was a steel plate of 1.2mm thickness and electrode was Cu-Cr alloy of 6mm diameter. When spot welding started, the clearance of two specimens was changed 0mm, 3mm and 5mm and distance from vise to measure influence of bending moment 25mm, 45mm, 65mm step by step. The fractured surface of specimen after this test was observed by Optical Microscope to measure microstructure and nugget shape. When clearance of two specimen was 3mm and 5mm, strength and nugget size was decreased and nugget shape was not clear. The much bending moment and crosshead speed are the much tensile shear load is.

  • PDF

Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.99-110
    • /
    • 2017
  • In this paper, the effect of normal load on the failure mechanism of echelon joint has been studied using PFC2D. In the first step, calibration of PFC was undertaken with respect to the data obtained from experimental laboratory tests. Then, six different models consisting various echelon joint were prepared and tested under two low and high normal loads. Furthermore, validation of the simulated models were cross checked with the results of direct shear tests performed on non-persistent jointed physical models. The simulations demonstrated that failure patterns were mostly influenced by normal loading, while the shear strength was linked to failure mechanism. When ligament angle is less than $90^{\circ}$, the stable crack growth length is increased by increasing the normal loading. In this condition, fish eyes failure pattern occur in rock bridge. With higher ligament angles, the rock bridge was broken under high normal loading. Applying higher normal loading increases the number of fracture sets while dilation angle and mean orientations of fracture sets with respect to ligament direction will be decreased.

Tensile and Shear Strengths of New Type of Cast-in-Place Concrete Insert Anchors Under Monotonic Loading (새로운 형태의 선설치 인서트 앵커에 대한 단조 인장 및 전단강도 평가)

  • Jeon, Ju-Seong;Kim, Ji-Hoon;Oh, Chang-Soo;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.49-56
    • /
    • 2021
  • The damage to non-structural elements in buildings has been increasing due to earthquakes. In Korea, post-installed anchors produced overseas have been mainly used for seismic anchorage of non-structural components to structures. Recently, a new cast-in-place concrete insert anchor installed in concrete without drilling has been developed in Korea. In this paper, an experimental study was conducted to evaluate the tensile and shear strengths of the newly developed anchor under monotonic load. The failure modes of the tension specimens were divided into concrete breakout failure and steel failure, and all shear specimens showed steel failure. In both tension and shear, the maximum loads of specimens were greater than the nominal strengths predicted by the concrete design code (KDS 14 20 54). As a result, it is expected that the current code can also be used to calculate the strength of the developed cast-in anchor.

Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface (극한지용 고장력강의 평균 응력 삼축비 및 평균 정규 로드 파라메터를 고려한 3차원 파단 변형률 평면 개발: 제2부 파단 변형률 평면의 정식화)

  • Chong, Joonmo;Park, Sung-Ju;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.454-462
    • /
    • 2015
  • An extended study was conducted on the fracture criterion by Choung et al. (2011; 2012) and Choung and Nam (2013), and the results are presented in two parts. The theoretical background of the fracture and the results of new experimental studies were reported in Part I, and three-dimensional fracture surface formulations and verifications are reported in Part II. How the corrected true stress can be processed from the extrapolated true stress is first introduced. Numerical simulations using the corrected true stress were conducted for pure shear, shear-tension, and pure compression tests. The numerical results perfectly coincided with test results, except for the pure shear simulations, where volume locking appeared to prevent a load reduction. The average stress triaxialities, average normalized lode parameters, and equivalent plastic strain at fracture initiation were extracted from numerical simulations to formulate a new three-dimensional fracture strain surface. A series of extra tests with asymmetric notch specimens was performed to check the validity of the newly developed fracture strain surface. Then, a new user-subroutine was developed to calculate and transfer the two fracture parameters to commercial finite element code. Simulation results based on the user-subroutine were in good agreement with the test results.

A Study on Effects of Welding Clearance on Spot Weldability (점용접 간극이 용접성에 미치는 영향에 관한 연구)

  • 임재규;양승현;국중하
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.55-61
    • /
    • 2002
  • The automobile is made up of about twenty thousand parts. Some parts are formed by pressing and combined by spot welding. Among them, steel palate of fuel tank is formed in the metal mold and bending parts are jointed by spot and seam welding. To find weldability conditions of spot welding, clearance between two welding steel plates was made and after spot welding, weldability is evaluated by means of tensile shear load, nugget size and shape. Specimen used in this study was a mild steel of 1.2mm thickness and electrode was Cu-Cr alloy of 6mm diameter. When spot welding started, the clearance of two steel plates was changed 0mm, 3mm and 5mm step by step. The fractured surface of specimen after this test was observed by Optical Microscope to measure microstructure and nugget shape. When clearance of two specimen was 3mm and 5mm, strength and nugget size was decreased and nugget shape was not clear.

Microstructure and Mechanical Properties of Gas Metal Arc Brazed Joint of DP Steel with Cu-Si Filler Metal (Cu-Si 삽입금속을 이용한 DP강의 MIG 아크 브레이징 접합부의 미세조직과 기계적 성질)

  • Cho, Wook-Je;Yoon, Tae-Jin;Kwak, Sung-Yun;Lee, Jae-Hyeong;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.70-76
    • /
    • 2016
  • In this study, Microstructure and tensile properties in arc brazed joints of 1000MPa grade DP steel using Cu-Si insert metal were investigated. The fusion zone was composed of Cu phase which solidified a little Fe and Si. The former phase formed due to dilute the edge of base material by arc, although Fe was not solid solution in Cu at the room temperature. Cu3Si particles formed by crystallization at $1100^{\circ}C$ during faster cooling. After the tensile shear test, there are no differences between the brazed joint efficiencies. The maximum joint efficient was about 37% compared to strength of base metal. It is better than that of arc brazed joint of DP steel using Cu-Sn filler metal. Fracture position of all brazing conditions was in the fusion zone. Crack initiation occurred at three junction point which was a stress singularity point of upper sheet, lower sheet and the fusion zone. And then crack propagated across the fusion zone. The reason why the fracture occurred at fusion zone was that the hardness of fusion zone was lower than that of base material and heat affected zone. The correlation among maximum load and hardness of fusion zone and EST at fractured position was $R^2=0.9338$. Therefore, this means that hardness and EST can have great impact on maximum load.

Effect of the Heat Input on the Tensile Properties in Arc Brazing of Ferritic Stainless Steel using Cu-Si Insert Alloy (Cu-Si계 삽입금속을 사용한 페라이트계 스테인리스강의 아크 브레이징에서 인장성질에 미치는 입열량의 영향)

  • Kim, Myung-Bok;Kim, Sang-Ju;Lee, Bong-Keun;Yuan, Xin Jian;Yoon, Byoung-Hyun;Woo, In-Su;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.289-296
    • /
    • 2010
  • The effects of heat input and different microstructureswere investigated on the tensile-shear properties of an arc-brazed joint of theferritic stainless steel 429EM using a Cu-Si insert alloy. The brazing speed was fixed at 800 mm/min whilethe brazing current varied from 80 to 120A. For abrazing current lower than 100A, fracturing occurred at the joint root in the direction perpendicular to the tensile load. As the brazing current increased to 120A, fracturing occurred at the base metal or the joint root. The joint and the base metal had very similar yield and tensile load values. However, the amount of elongation was decreased considerably compared to when the base metal was used. The fracturing began at the triple point of the root part and was classified into three types. The difference in the tensile-shear properties was closely related to the three fracture types.

Comparative Study on Various Ductile Fracture Models for Marine Structural Steel EH36

  • Park, Sung-Ju;Lee, Kangsu;Cerik, Burak Can;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • It is important to obtain reasonable predictions of the extent of the damage during maritime accidents such as ship collisions and groundings. Many fracture models based on different mechanical backgrounds have been proposed and can be used to estimate the extent of damage involving ductile fracture. The goal of this study was to compare the damage extents provided by some selected fracture models. Instead of performing a new series of material constant calibration tests, the fracture test results for the ship building steel EH36 obtained by Park et al. (2019) were used which included specimens with different geometries such as central hole, pure shear, and notched tensile specimens. The test results were compared with seven ductile fracture surfaces: Johnson-Cook, Cockcroft-Latham-Oh, Bai-Wierzbicki, Modified Mohr-Coulomb, Lou-Huh, Maximum shear stress, and Hosford-Coulomb. The linear damage accumulation law was applied to consider the effect of the loading path on each fracture surface. The Swift-Voce combined constitutive model was used to accurately define the flow stress in a large strain region. The reliability of these simulations was verified by the good agreement between the axial tension force elongation relations captured from the tests and simulations without fracture assignment. The material constants corresponding to each fracture surface were calibrated using an optimization technique with the minimized object function of the residual sum of errors between the simulated and predicted stress triaxiality and load angle parameter values to fracture initiation. The reliabilities of the calibrated material constants of B-W, MMC, L-H, and HC were the best, whereas there was a high residual sum of errors in the case of the MMS, C-L-O, and J-C models. The most accurate fracture predictions for the fracture specimens were made by the B-W, MMC, L-H, and HC models.

Microstructure and Tensile Strength Property of Arc Brazed DP steel using Cu-Sn Insert Metal (Cu-Sn 삽입금속을 이용한 DP강의 아크 브레이징 접합부의 미세조직과 인장특성)

  • Cho, Wook-Je;Cho, Young-Ho;Yun, Jung-Gil;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.58-64
    • /
    • 2013
  • The following results were obtained, microstructures and tensile properties in arc brazed joints of DP(dual phase) steel using Cu-5.3wt%Sn insert metal was investigated as function of brazing current. 1) The Fusion Zone was composed of ${\alpha}Fe+{\gamma}Cu$ and Cu23Sn2. The reason for the formation of these solid solutions. Despite, Fe & Cu were impossible to solid solution at room temperature. It's melting & reaction to something of insert metal & Base Metal (DP Steel) by Arc. Brazing Process has faster cooling rate then Cast Process, Supersaturated solid solution at room temperature. 2) The increase Hardness of Fusion Zone was directly proportional to the rise of welding current. Because, ${\alpha}Fe+{\gamma}Cu$ phase (higher hardness than the Cu23Sn2.(104.1Hv < 271.9Hv)) Volume fraction was Growth, due to increasing the amount of base metal melting by High current. 3) The results of tensile shear test by Brazing, All specimens happen to fracture in Fusion Zone. On the other hand, when Brazing Current increasing tend to rise tensile load. but it was very small, about 26-30% of the base metal. 4) The result of fracture analysis, The crack initiate at Triple Point for meet to Upper B.M/Under B.M/Fusion Zone. This Crack propagated to Fusion zone. So ruptured by tensile strength. The Reason to in the fusion zone fracture, Fusion zone by Brazing of hardness (strength) was very lower then the base metal (DP steel). In addition the Fusion Zone's thickness in triple point was thin than the base metal's thickness in triple point.

Analysis on the Bonded Single Lap-Joint Containing the Interface Edge Crack (에지계면균열을 갖는 단순겹치기 접착이음의 강도평가)

  • Yoo, Young-Chul;Park, Jung-Hwan;Lee, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.159-166
    • /
    • 1998
  • The problem of interface crack in the bonded structures has received a great deal of attention in recent years. In this paper the aluminum bonded single lap-joint containing the interface edge crack is investigated. The tensile load and the average shear stress of the adhesive joints which have different crack length are obtained from the static tensile tests. The critical value of crack length to provoke the interface fracture is determined to a/L=0.4, where a is the interface crack length and L is the adhesive lap-length. The fracture mechanical parameters are introduced to confirm the existence of the critical crack length. The compliance and the stress intensity factors are calculated using the displacement and the stress near the interface crack tip by the boundary element method. These numerical results support the experimental results that the critical value of a/L is 0.4. It is known that the compliance and the stress intensity factors are the efficient parameters to estimate the bonded single lap-joint containing the interface edge crack.

  • PDF