• Title/Summary/Keyword: Tensile reinforcement

Search Result 778, Processing Time 0.023 seconds

Bearing capacity of geotextile-reinforced sand with varying fine fraction

  • Deb, Kousik;Konai, Sanku
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.33-45
    • /
    • 2014
  • Use of geotextile as reinforcement material to improve the weak soil is a popular method these days. Tensile strength of geotextile and the soil-geotextile interaction are the major factors which influence the improvement of the soil. Change in fine content within the sand can change the interface behavior between soil and geotextile. In the present paper, the bearing capacity of unreinforced and geotextile-reinforced sand with different percentages of fines has been studied. A series of model tests have been carried out and the load settlement curves are obtained. The ultimate load carrying capacity of unreinforced and reinforced sand with different percentages of fines is compared. The interface behavior of sand and geotextile with various percentages of fines is also studied. It is observed that sand having around 5% of fine is suitable or permissible for bearing capacity improvement due to the application of geosynthetic reinforcement. The effectiveness of the reinforcement in load carrying capacity improvement decreases due to the addition of excessive amount of fines.

An Experimental Study on Beam Strengthening of RC Buildings with Expanded Steel Plates in Rural Area (농어촌 지역 RC건축물 보의 철판망 보강에 관한 실험 연구)

  • Kim, Yoon IL;Hong, Si Hyun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.7 no.1
    • /
    • pp.121-128
    • /
    • 2005
  • This experimental study was conducted to investigate beam strengthening of RC buildings with expended steel plate(ESP) in rural area. Nine test specimens were manufactured, whose variables were tensile steel ratio and the amount and the shape of expanded steel plate. The test results indicated that strengthened beams with ESP showed the improvement of flexural strength of 50%~90%, and the beam strengthening of U type was excellent for shear reinforcement as well as flexural reinforcement, more over, the honeycomb shape of ESP and anchor bolts for development of ESP were very effective.

  • PDF

High Strength Electrospun Nanofiber Mats via CNT Reinforcement: A Review

  • Pant, Bishweshwar;Park, Mira;Park, Soo-Jin;Kim, Hak Yong
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.186-193
    • /
    • 2016
  • The development of electrospun nanofibers with improved mechanical properties is of great scientific and technological interest because of their wide-range of applications. Reinforcement of carbon nanotubes (CNTs) into the polymer matrix is considered as a promising strategy for substantially enhancing the mechanical properties of resulting CNTs/polymer composite mats on account of extraordinary mechanical properties of CNTs such as ultra-high Young's modulus and tensile strengths. This paper summarizes the recent developments on electrospun CNTs/polymer composite mats with an emphasis on their mechanical properties.

Papyrus reinforced poly(L-lactic acid) composite

  • Nishino, Takashi;Hirao, Koichi;Kotera, Masaru
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.259-267
    • /
    • 2007
  • Mechanical reinforcement of an all-sustainable composite, composed of papyrus stem-milled particles as reinforcement and poly-L-lactic acid (PLLA) resin as matrix, was investigated. The papyrus particles (average diameter of $70{\mu}m$) could be well dispersed in PLLA resin up to 50 wt% without any surface modification. Young's modulus of the composite was 4.2 GPa at 50 wt% of the papyrus content. This is a two-fold increment in modulus as compared to that of the PLLA matrix. The tensile strength of the composite was almost constant around 48 MPa irrespective of the papyrus content. Temperature dependence of the storage modulus demonstrated that the incorporation of papyrus restricts the large drop in the modulus above the glass transition of PLLA.

Studies on the Chemical Treatment of Silica for Synthetic Rubber Reinforcement (II) -Silica Treatment by LBR-MDI- (합성(合成)고무 보강제(補强劑) Silica의 화학처리(化學處理)에 관(關)한 연구(硏究) (II) -MDI 처리(處理) Silica의 LBR처리(處理)-)

  • Jin, Je-Yong;Kim, Hong-Seon;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.30 no.3
    • /
    • pp.207-217
    • /
    • 1995
  • The reinforcement of Inorganic filler silica treated with LBR-MDI In SBR vulcanizates were Investigated. The inorganic filler silica treated with MDI on unmodified surface and that of silica treated by MDI was retreated with LBR. The charateristics of vulcanization, physical properties, surface properites and dynamic properties were investigated after mixing those silica with SBR and unmodified silica with SBR. Rheometric studies of the vulcanization showed that S-series has fast scorch $time(t_{10})$ and an optimum cure $time(t_{90})$ in the SBR compounds. And it was turned out that SBR vulcanizates compounded with LBR treated silica was better than any other componnds in hardness, tensile strenght, 100 300% modula and elongation. We could confirm that urea bonding is formed from IR spectrum. We concluded that L-series shows the best reinforcement effect in SBR vulcanizates.

  • PDF

Effects of Geosynthetic Reinforcement on Compaction of High Water Content Clay (토목섬유 보강이 고함수비 점성토의 다짐에 미치는 영향)

  • Roh Han Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.67-84
    • /
    • 2005
  • This research was conducted to evaluate the effectiveness of reinforcement for nearly saturated soft clay compaction. The effectiveness was investigated by roller compaction test using nearly saturated clay specimens. The nearly saturated condition was obtained by submerging clay in the water for 12 hours. High water content specimens were compacted in plane strain condition by a steel roller. A specimen was compacted by four 5 cm horizontal layers. Specimens were prepared fur both reinforced and unreinforced cases to evaluate the effectiveness of reinforcement. Used reinforcement is a composite consisted of both woven and non-woven geotextile. The composite usually provides drainage and tensile reinforcement to hi인 water-contented clay so that it increases bearing capacity. Therefore, large compaction load can be applied to reinforced clay and it achieves higher density effectively. The reinforcement also increases compaction efficiency because it reduces the ratio between shear and vertical forces during compaction process. The maximum vertical stress on the base of specimen usually decreased with higher compaction thickness. The reinforcement increases soil stiffness under the compaction roller and it initiates stress concentration. As a result, it maintains higher vertical stress level on the base of specimen that provides better compaction characteristics. Based on test results, it can be concluded that the reinforcement is essential to achieve effective compaction on soft clay.

Interfacial and Tensile Properties of TiNi Shape Memory Alloy reinforced 6061 Al Smart Composites by vacuum casting (진공주조법에 의한 TiNi 형상기억합금 강화 6061Al 지적 복합재료의 계면 및 인장 특성)

  • Park, Gwang-Hun;Park, Seong-Gi;Sin, Sun-Gi;Park, Yeong-Cheol;Lee, Gyu-Chang;Lee, Jun-Hui
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1057-1062
    • /
    • 2001
  • We investigated the change of mechanical properties for TiNi shape memory alloy by heat treatment. 6061Al matrix composites with TiNi shape memory alloy as reinforcement were fabricated by vacuum casting. TiNi alloy has the maximum tensile strength at 673K treated and there is no change of tensile strength and hardness at 448K treated. The composites, prepared by vacuum casting, showed good interface bonding by vacuum casting. It was about 3$\mu\textrm{m}$ of thickness of the diffusion layer. Tensile strength of the composite was in higher than that of 6061Al alloy as increased value of about 70MPa at room temperature and about 110MPa at 363K. We thought that the increase of the tensile strength at 363K was due to reverse transformation of the TiNi shape memory alloy.

  • PDF

Flexural Fracture Properties of Reinforced Concrete Beam with Latex Contents (라텍스 혼입률에 따른 철근콘크리트의 휨파괴 거동특성)

  • Jeong, Won-Kyong;Kim, Dong-Ho;Lee, Joo-Hyong;Lim, Hong-Beom;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.177-184
    • /
    • 2002
  • Reinforced concrete(R/C) is commonly used to structures because they have many merits that compressive strength, economy and so on. However, reinforced concrete has a crack at the tensile section which is due to the relatively lower tensile strength than its compressive strength Latex modified concrete(LMC) has higher tensile and flexural strength than the ordinary portland cement, due to the interconnections of hydrated cement and aggregates by a film of latex particles. The purpose of this study was to investigate the flexural behavior of reinforced concrete beam with latex modified concrete, having the main experimental variables such as concrete types(ordinary portland cement concrete, latex modified concrete), latex contents(0%, 15%), flexural steel ratios(0.012, 0.0235), and with/without shear reinforcement. The beam of LMC showed considerably higher initial cracking loads and ductility than that of OPC, but, similar to ultimate strength and deflection. This might be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic, and colloidal properties of the latexes resulting in reduced water evaporation. The beam with latex modified concrete could be adopted at field for controlling and reducing the tensile crack due to its higher tensile strength.

  • PDF

Fundamental Electro-Mechanical Characteristics of Ballooning-Resistant Bi-2223 HTS Tapes (벌루닝 손상에 강한 Bi-2223 테이프의 기본적인 전기-기계적 특성)

  • Dizon, John Ryan C;Shin, Hyung-Seop;Ha, Dong-Woo;Cho, Jeon-Wook;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.26-27
    • /
    • 2006
  • The fundamental mechanical characteristics under tensile and bending deformations of hermetically-sealed reinforced Bi-2223 tape and CTOP processed Bi-2223 tape were examined at 77K. Also, the Tensile strain dependence of the critical current, $I_c$, was obtained at 77K and self-field. The reinforced hermetic tape showed higher tensile strength and a better Tensile strain tolerance than the CTOP processed tape. For bending tests, a rho-shaped sample holder was used giving multiple bending strains. in increasing order. In the same case under bending deformation, the hermetic tape showed a higher bending strain tolerance than the CTOP processed tape. This higher strength of the hermetic tape can be attributed to the thick hardened copper reinforcement layer.

  • PDF

Effect of Glass Fiber Contents on the Tensile Strength in Injection Molding Process (사출성형공정에서 유리섬유함유량이 인장강도에 미치는 영향)

  • 김영수;김인관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.63-69
    • /
    • 2000
  • The main target of this research is investigating the relations between mechanical properties and injection conditions, like injection pressure, packing pressure and packing time for various contents ratio of glass fiber and resin. In general idea, high injection pressure produces high strength of molded parts as a monotonic function. but it was revealed that high pressure does not make high strength directly through various experiments of injection molding. In this experiments, PA66 was selected as resin and Glass Fiber was selected as reinforcing fiber Fiber reinforcement was controlled, as 14%, 25%, 33%, 44% of total volume and packing pressure was divided 55%, 65%, 75%, 85% of reference pressure, i.e. 100% equal to 1400kgf/$\textrm{cm}^2$. Finally, tensile testing was executed for injected test specimen. Optimum results based on authors' experiments have been obtained under conditions of 25% and 33% of glass fiber contents. Tensile strength rather depends on the packing pressure and packing time than injection pressure. Especially almost equal value of tensile strength was obtained for various percentage of packing and injection pressure as 65%, 75% and 85% of reference pressure.

  • PDF