• 제목/요약/키워드: Tensile bonding strength

검색결과 445건 처리시간 0.023초

구상흑연주철 FCD60과 Cr-Mo강 SCM440 확산접합부의 인장성질에 미치는 접합조건의 영향 (The Effect of Bonding Condition on Tensile Properties of Diffusion Bonds of Graphite Cast Iron FCD60 to Cr-Mo Steel SCM440)

  • 송우현;김정길;강정윤
    • Journal of Welding and Joining
    • /
    • 제22권1호
    • /
    • pp.77-82
    • /
    • 2004
  • The effect of bonding condition on tensile properties of joints diffusion bonded spheroidal graphite cast iron, FCD60 to Cr-Mo steel, SCM 440 was investigated. Diffusion bonding was performed with various temperatures, holding times, pressures and atmospheres. All tensile specimens were fractured at the bonding interface. The tensile strength and elongation was increased with increasing bonding temperature. Especially, tensile strength of joints bonded at 1123K was higher than that of a raw material, FCD60, and tensile strength of joints bonded at 1173K was equal to that of a raw material, SCM440, but elongation of all joints was lower than those of raw materials. There was little the effect of holding time on the tensile properties. In comparison with bonding atmosphere, the difference of tensile strength was not observed, but elongation of joint bonded at vacuum(6.7mPa and 67mPa) was higher than that of Ar gas. Higher the degee of vacuum, elongation increased. Tensile properties of diffusion bonds depended on microstructures of cast iron at the interface and void ratio. Microstructures of cast iron at interface changed with temperature, because decarburizing and interdiffusion at the interface occurs and transformation of austenite-1 ferrite + graphite occurs on the cooling process. The void ratio decreased with increasing temperature, especially, effected on the elongation.

지속적 가압 주사식 열중합 의치상 레진에 대한 열중합, 자가중합 및 광중합 레진의 결합력에 관한 비교분석 (COMPARATIVE TENSILE BOND STRENGTH OF HEAT-CURED, COLD-CURED, AND LIGHT CURED DENTURE BASE RESINS BONDED TO CONTINUOUS-PRESSURE INJECTION TYPE DENTURE BASE RESIN)

  • 황승우;정문규
    • 대한치과보철학회지
    • /
    • 제31권3호
    • /
    • pp.385-393
    • /
    • 1993
  • Injection processing of denture base resin was introduced by Pryer in 1942, in an attempt to reduce processing shrinkage. More recently a continuous-pressure injection type technique has been developed (SR-Ivocap, Ivoclar AG, Schaan, Liechtenstein.), and it reduced processing error and increased resin density. The purpose of this study was to compare tensile bond strength of heat-cured, cold-cured, and light-cured denture base resin bonded to continuous-pressure injection type resin. To know it, 60 cylindrical resin specimens were fabricated, and tensile bond strength were measured. The results were as follows : 1. The mean tensile bond strength bonded to continuous-pressure injection type resin was lower than bonded to conventional heat cured resin. But tensile bond strength of conventional heat cured resin bonding with light cured resin was lower than continuous-pressure injection type resin. 2. Of the tensile bond strength bonded to continuous-pressure injection type resin, tensile bond strength bonding with continuous-pressure injection type resin was the greatest(but not significantly different from bonding with conventional heat cured resin), followed by cold-cured, light-cured resin. 3. Of the tensile bond strength bonded to conventional heat cured resin, tensile bond strength bonding with conventional heat cured resin was the greatest and followed by continuous-pressure injection type resin, cold-cured resin, light-cured resin. According to these results, bonding of continuous-pressure injection type resin with conventional heat cured resin or continuous-pressure injection type resin is acceptable, but bonding with light-cured resin is questionable.

  • PDF

Rene 80/B/Rene 80 액상 확산접합부의 기계적 성질 (Mechanical Property of Liquid Phase Diffusion Bonded Joint of Rene80/B/Rene80)

  • 정재필;강춘식
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.125-133
    • /
    • 1995
  • Rene80 superalloy was liquid phase diffusion bonded by using pure boron (B) as an insert material. As a basic study for the possibility of practical application of this bonding method, hardness and high temperature tensile strength of the bonded joint and metallurgical analysis were investigated. As experimental results, hardness of the bonded joint was homogenized after bonding and the tensile strength at 1144K was obtained to 90% of that of base metal. But there were some problems to be improved also, that means the joint was hardened after bonding due to increase of B content and elongation was much lower than that of base metal. Flat area and (Mo, Cr, W) boride, which should be harmful for bonding strength, were observed on the fractured surface of the tensile tested specimen.

  • PDF

열처리 방법에 따른 SOI 기판의 스트레스변화 (Stress Evolution with Annealing Methods in SOI Wafer Pairs)

  • 서태윤;이상현;송오성
    • 한국재료학회지
    • /
    • 제12권10호
    • /
    • pp.820-824
    • /
    • 2002
  • It is of importance to know that the bonding strength and interfacial stress of SOI wafer pairs to meet with mechanical and thermal stresses during process. We fabricated Si/2000$\AA$-SiO$_2$ ∥ 2000$\AA$-SiO$_2$/Si SOI wafer pairs with electric furnace annealing, rapid thermal annealing (RTA), and fast linear annealing (FLA), respectively, by varying the annealing temperatures at a given annealing process. Bonding strength and interfacial stress were measured by a razor blade crack opening method and a laser curvature characterization method, respectively. All the annealing process induced the tensile thermal stresses. Electrical furnace annealing achieved the maximum bonding strength at $1000^{\circ}C$-2 hr anneal, while it produced constant thermal tensile stress by $1000^{\circ}C$. RTA showed very small bonding strength due to premating failure during annealing. FLA showed enough bonding strength at $500^{\circ}C$, however large thermal tensile stress were induced. We confirmed that premated wafer pairs should have appropriate compressive interfacial stress to compensate the thermal tensile stress during a given annealing process.

유리섬유의 특성이 열가소성 복합재료의 기계적 성질에 미치는 영향 (Effects of the Glass Fiber Characteristics on the Mechanical Properties of Thermoplastic Composite)

  • 이중희;이정권;이경엽
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1697-1702
    • /
    • 2000
  • This study has been performed to investigate the effects of glass fiber characteristics on the mechanical properties of thermoplastic composite. The surface of glass fiber was coated with the silan e to enhance the bonding strength between fiber and matrix. A micro-droplet pull-off test was performed to investigate the influence of the silane concentration on the bonding strength. The maximum bonding strength was observed around 10.8% silane concentration. In order to examine the influence of the fiber length and fiber content on the properties of the composite, the composite materials involving tile fiber lengths of 5mm, 10mm, 15mm 20mm, and 25mm were tested. The composites used contain 20%, 30%, and 40% by weight of glass fibers. Tension and flexural tests were performed to investigate their mechanical properties of the composites. The tensile strength and tensile modulus of the composite increase with increasing the glass fiber content. The tensile modulus increases slightly with increasing the fiber length. The maximum tensile strength is observed around the fiber length of 15-20mm. The flexural modulus and strength also increase slightly with increasing the fiber length.

상아질면(象牙質面)에 대(對)한 복합(複合)resin 인장강도(引張強度)에 관(關)한 실험적(實驗的) 연구(硏究) (AN EXPERIMENTAL STUDY ON THE TENSILE STRENGTH OF COMPOSITE RESIN TO ETCHED DENTIN SURFACE)

  • 박선재;최호영;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제8권1호
    • /
    • pp.107-113
    • /
    • 1982
  • The purpose of this study was to observe the tensile strength of composite resins to etched dentin surface with the various methods of placing bonding agent before composite resin or placing composite resin alone. Recently extracted 60 maxillary incisors were chosen. These were divided into 6 groups: Group I : Immediate Silar adaptation to the etched dentin surface with 37% phosphoric acid for 60 seconds without bonding agent. Group II : Immediate Silar adaptation to the etched dentin surface with 37% phosphoric acid for 60 seconds with bonding agent. Group III : Silar adaptation to the etched dentin surface with 37% phosphoric acid for 60 seconds after 5 minutes of bonding agent. Group IV : Immediate Enamelite adaptation to the etched dentin surfaces with 50% phosphoric acid for 120 seconds without bonding agent. Group V : Immediate Enamelite adaptation to the etched dentin surface with 50% phosphoric acid for 120 second s with bonding again. Group VI : Enamelite adaptation to the etched dentin surface with 50% phosphoric acid for 120 seconds after 5 minutes of bonding agent. All specimens were immersed in water at $37^{\circ}C$ for 24 hours before testing. The results were as follows: 1. The tensile strength of powder/liquid composite resin system was higher than that of pastel paste composite resin system. 2. The tensile strength of the composite resin group II, III, V, & VI with bonding agent was higher than that of the composite resin group I & IV without bonding agent. 3. The tensile strength of the composite resin group III & VI after 5 minutes added to bonding agent was higher than that of the composite resin group II & V immediately added to bonding agent.

  • PDF

환경영향을 고려한 WELD BONDING 시험편의 강도평가(인장전단의 경우) (Evaluation of Strength of Weld Bonding Specimen Considering Effects of Environments (In Case of Tensile Shear))

  • Lim, Ki-Chang;Kuen Ha, Shin;S.H. Lim
    • 한국안전학회지
    • /
    • 제7권3호
    • /
    • pp.99-107
    • /
    • 1992
  • Weld bonding can be applied as a combined method of spot welding and adhesive to have more advantages than those. Weld bonding has many merits that enlarge the fatigue strength of spot Welding and also improve the creep of adhesive. But it has not beer proved well in the various environmental conditions. In this study, weld bonding test for fatigue properties and tensile strength is presented under such various coditions as temperatures, humidity, and etc.

  • PDF

Drying time of tray adhesive for adequate tensile bond strength between polyvinylsiloxane impression and tray resin material

  • Yi, Myong-Hee;Shim, Joon-Sung;Lee, Keun-Woo;Chung, Moon-Kyu
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.63-67
    • /
    • 2009
  • STATEMENT OF PROBLEM. Use of custom tray and tray adhesive is clinically recommended for elastomeric impression material. However there is not clear mention of drying time of tray adhesive in achieving appropriate bonding strength of tray material and impression material. PURPOSE. This study is to investigate an appropriate drying time of tray adhesives by evaluating tensile bonding strength between two types of polyvinylsiloxane impression materials and resin tray, according to various drying time intervals of tray adhesives, and with different manufacturing company combination of impression material and tray adhesive. MATERIAL AND METHODS. Adhesives used in this study were Silfix (Dentsply Caulk, Milford, Del, USA) and VPS Tray Adhesive (3M ESPE, Seefeld, Germany) and impression materials were Aquasil Ultra (monophase regular set, Dentsply Caulk, Milford, Del, USA) and Imprint II Garant (regular body, 3M ESPE, Seefeld, Germany). They were used combinations from the same manufacture and exchanged combinations of the two. The drying time was designed to air dry, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 25 minutes. Total 240 of test specimens were prepared by auto-polymerizing tray material(Instant Tray Mix, Lang, Wheeling, Il, USA) with 10 specimens in each group. The specimens were placed in the Universal Testing machine (Instron, model 3366, Instron Corp, University avenue, Nowood, MA, USA) to perform the tensile test (cross head speed 5 mm/min). The statistically efficient drying time was evaluated through ANOVA and Scheffe test. All the tests were performed at 95% confidence level. RESULTS. The results revealed that at least 10 minutes is needed for Silfix-Aquasil, and 15 minutes for VPS Tray Adhesive-Imprint II, to attain an appropriate tensile bonding strength. VPS Tray Adhesive-Imprint II had a superior tensile bonding strength when compared to Silfix-Aquasil over 15 minutes. Silfix-Aquasil had a superior bonding strength to VPS Tray Adhesive-Aquasil, and VPS Tray Adhesive-Imprint II had a superior tensile bonding strength to Silfix-Imprint II at all drying periods. CONCLUSION. Significant increase in tensile bonding strength with Silfix-Aquasil and VPS Tray adhesive-Imprint II combination until 10 and 15 minutes respectively. Tray adhesive-impression material combination from the same company presented higher tensile bonding strength at all drying time intervals than when using tray adhesive-impression material of different manufactures.

VAE계 분말을 혼입한 고강도 폴리머 시멘트 모르타르의 강도 특성 (Strength Properties of High-Strength Polymer Cement Mortars Containing VAE Powder)

  • 최중구;이건철;이건영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.19-20
    • /
    • 2014
  • This study is to find out the tensile strength and bonding strength of VAE powder as a preliminary study for the application of the powder to the high strength concrete. The result of the study showed that the compressive strength decreases when more polymers is put into the concrete. On the other hand, it showed that the tensile strength and the bonding strength get improved when the more polymers are put into the concrete. Especially in case of the mixture for high strength concrete, it was found out that more strength is produced than the ordinary concrete.

  • PDF

냉간압연강판 접착 및 기계적 프레스 접합부의 피로강도 평가 (Fatigue Strength Evaluation of Adhesive Bonded and Mechanical Pressed Joints of Cold Rolled Steel Sheet)

  • 김호경
    • 한국안전학회지
    • /
    • 제25권1호
    • /
    • pp.1-8
    • /
    • 2010
  • The tensile and fatigue experiments were conducted with tensile-shear specimens for investigating the strength of adhesive bonded and mechanical press joints of SPCC steel sheet used in the field of the automobile industry. The optimal punch press force was evaluated 50kN for combining epoxy adhesive bonding and mechanical press joining with a diameter of 8.3mm using SPCC sheet with a thickness of 0.8mm. The combining epoxy adhesive bonding and mechanical press joining exhibits the maximum tensile force of 750N. The fatigue strengths of the combination of adhesive bond and mechanical press joint and pure adhesive joint were evaluated 370N and 320N at 106cycles, respectively. These values correspond to 22% and 20% of their maximum tensile forces, respectively. However, the fatigue strength of the combination of adhesive bond and mechanical press joining was much lower than that of pure mechanical press joining.