• Title/Summary/Keyword: Tensile bond strength

Search Result 478, Processing Time 0.02 seconds

Investigation of bonding properties of denture bases to silicone-based soft denture liner immersed in isobutyl methacrylate and 2-hydroxyethyl methacrylate

  • Akin, Hakan;Tugut, Faik;Mutaf, Burcu;Guney, Umit
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.121-125
    • /
    • 2014
  • PURPOSE. The purpose of this study was to investigate the bonding properties of denture bases to silicone-based soft denture liners immersed in isobutyl methacrylate (iBMA) and 2-hydroxyethyl methacrylate (HEMA) for various lengths of time. MATERIALS AND METHODS. Polymethyl methacrylate (PMMA) test specimens were fabricated (75 mm in length, 12 mm in diameter at the thickest section, and 7 mm at the thinnest section) and then randomly assigned to five groups (n=15); untreated (Group 1), resilient liner immersed in iBMA for 1 minute (Group 2), resilient liner immersed in iBMA for 3 minutes (Group 3), resilient liner immersed in HEMA for 1 minute (Group 4), and resilient liner immersed in HEMA for 3 minutes (Group 5). The resilient liner specimens were processed between 2 PMMA blocks. Bonding strength of the liners to PMMA was compared by tensile test with a universal testing machine at a crosshead speed of 5 mm/min. Data were evaluated by 1-way ANOVA and post hoc Tukey-Kramer multiple comparisons tests (${\alpha}$=0.05). RESULTS. The highest mean value of force was observed in Group 3 specimens. The differences between groups were statistically significant (P<.05), except between Group 1 and Group 4 (P=.063). CONCLUSION. Immersion of silicone-based soft denture liners in iBMA for 3 minutes doubled the tensile bond strength between the silicone soft liner and PMMA denture base materials compared to the control group.

Deinking process of Old Newsprint(ONP) by using Modified Cellulase with synthesized copolymer (기능성 고분자를 이용한 수식 셀룰라아제의 폐 신문용지 탈묵에 관한 연구)

  • Kim, Honghyun;Kwak, Tae-Heon;Park, Jinwon;Park, Kwinam
    • Clean Technology
    • /
    • v.10 no.4
    • /
    • pp.195-201
    • /
    • 2004
  • Cellulase was modified with copolymer with polyethylene(PE)/polypropylene(PP) oxide and maleic anhydride(MA) by maleylation reaction, and modified cellulase was applied to the reprocessing of old newsprint (ONP). Cellulase of modified cellulase enhanced the detachment of ink particles by fibrillation of fiber. The copolymer, which acted as the surfactant formed bubbles and removed the ink particles in the floatation process. Modified cellulase showed the same deinking ability without excess dosage compared with the conventional method. And, it improved the physical properties including tensile strength, brightness, and whiteness compared with the conventional deinking process. The bond between the ink and fiber got stronger as the storage time increased, and it became very difficult to remove the ink particle. But, modified cellulase increased the deinking ability by 41% compared with the conventional process at the experiment of the ONP for 1 year storage time. It removed the yellowing and increased the whiteness and brightness as well as tensile strength and internal bond strength.

  • PDF

Evaluation of Fracture Strength of WA-Vitrified and Resinoid Bond Grinding Wheels by Acoustic Emission (AE에 의한 WA계 비트리파이드 및 레지노이드 結合劑硏削숫돌의 破壞强度評價)

  • 강명순;한응교;권동호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.241-251
    • /
    • 1988
  • The purpose of this paper is to evaluate fracture strength of WA-vitrified and resinoid bond grinding wheels by means of acoustic emission. The paper conducts tension test, compression test, splitting tensile test and bending test with AE measuring system. These tests have been carried out in accordance with the grain sizes and grades of grinding wheels. The fracture strength of grinding wheels is evaluated by the clarification of biaxal fracture criterion of Babel and Sines. It clarifies the influence of factors of grinding wheel upon AE characteristics and evaluates the predictability of life of grinding wheels and the perception of fracture.

A numerical tension-stiffening model for ultra high strength fiber-reinforced concrete beams

  • Na, Chaekuk;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.1-22
    • /
    • 2011
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber-reinforced concrete (UHSFRC) structures subject to monotonic loadings is introduced. Since engineering material properties of UHSFRC are remarkably different from those of normal strength concrete and engineered cementitious composite, classification of the mechanical characteristics related to the biaxial behavior of UHSFRC, from the designation of the basic material properties such as the uniaxial stress-strain relationship of UHSFRC to consideration of the bond stress-slip between the reinforcement and surrounding concrete with fiber, is conducted in this paper in order to make possible accurate simulation of the cracking behavior in UHSFRC structures. Based on the concept of the equivalent uniaxial strain, constitutive relationships of UHSFRC are presented in the axes of orthotropy which coincide with the principal axes of the total strain and rotate according to the loading history. This paper introduces a criterion to simulate the tension-stiffening effect on the basis of the force equilibriums, compatibility conditions, and bond stress-slip relationship in an idealized axial member and its efficiency is validated by comparison with available experimental data. Finally, the applicability of the proposed numerical model is established through correlation studies between analytical and experimental results for idealized UHSFRC beams.

A study on pre-bonding mechanism of Si wafer at HF pre-treatment (HF 전처리시 실리콘 기판의 초기접합 메카니즘에 관한 연구)

  • Kang, Kyung-Doo;Park, Chin-Sung;Lee, Chae-Bong;Ju, Byung-Kwon;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3313-3315
    • /
    • 1999
  • Si direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera respectively. A bond characteristic on the interface was analyzed by using IT- IR. Si-F bonds on Si surface after HF pre-treatment are replaced by Si-OH during a DI water rinse. Consequently, hydrophobic wafer was bonded by hydrogen bonding of Si $OH{\cdots}(HOH{\cdots}HOH{\cdots}HOH){\cdots}OH-Si$. The bond strength depends on the HF pre-treatment condition before pre- bonding (Min:$2.4kgf/crn^2{\sim}Max:14.9kgf/crn^2$)

  • PDF

Manufacture of the Prealloyed Powder for Powder Metallurgy by the Ion-diffusion Process (이온확산법에 의한 분말야금용 합금강분의 제조)

  • Yun, Seong-Ryeol;Han, Seung-Hui;Na, Jae-Hun;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.206-213
    • /
    • 1998
  • Cu, Ni, and Mo were ion-diffused into the pure steel powder in the aqueous solution of $(CuNO_3)_2$, $Ni(NO_3)_2)_2$, and $(NH_4)_6Mo_7O_{24}$, to form partial diffusion bond prealloyed steel powder. The mechanical properties, and compacting and sintering characteristics were investigated as a function of Cu. Ni and Mo contents. The results of the this research, it was found that the smallest change of size was observed, and the good degree of hardness and tensile strength was observed when 1.50wt%Cu, 1.75wt%Ni and 0.50wt%Mo was added each other. The powder metallurgy characteristics of partial diffusion bond prealloyed steel powder containing 1.50wt% of Cu, 1.75wt% of Ni and 0.5wt% of Mo were compared to those of distalloy $AB\textregistered$ which was manufactured in Hogani Corporation of Sweden. Partial diffusion bond prealloyed steel powder of this study had good degree of hardness and density, and its dimensional stability was same to that of pure steel powder. Under the same sintering density and temperature, the tensile strength of the ion powder from this research was $15~20Kg/\textrm{mm}^2$ larger than that of distalloy AB'. also the hardness was larger in the magnitude of Hv20-30. When the powder metallurgy heat-treated, hardness and tensile strength were substantially increased.

  • PDF

Studies on the Manufacturing of Carbon Bond Graphite Crucible (카아본 본드형 흑연 도가니 제조에 관한 연구)

  • 김충일;김문수
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.1
    • /
    • pp.11-19
    • /
    • 1976
  • This study was focused on the improvement of production techniques of small crucibles in relation with the appropriate selection of raw materials, various batch compositions and physical and chemical characteristics of the crucibles. Various tests gave the optimum batch composition for the carbon bond graphite cructble as follows: Pyontaek graphite flake (refractory aggregate) : 40Part Silicon carbide: 15Part Tar pitch (binder) : 11Part Inorganic additives (to improve the oxidation resistance) : 15 Part Cryolite : 3 Part Ferro manganese : 2 Part Ferrosilicon : 25 Part Crucibles pressed with 400kg/$\textrm{cm}^2$ at 12$0^{\circ}C$. and fired in reducing atmosphere at 120$0^{\circ}C$ brought the most favorable results as follows: Bulk density : 2.31 Apparent density : 2.58 Porosity : 15.2% Oxidation loss at 1, 50$0^{\circ}C$. for 3 hrs : below 3.77% Water absorption : 6.01% Compressive strength : 438kg/$\textrm{cm}^2$ Tensile strength : 256kg/$\textrm{cm}^2$.

  • PDF

FRACTURE OF HIGH-STRENGTH CONCRETE : Implications for Structural Applications

  • Darwin, David
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.11-30
    • /
    • 2000
  • Structural properties of reinforced concrete, such as bond and shear strength, that depend on the tensile properties of concrete are much lower for high-strength concrete than would be expected based on relationships developed for normal-strength concretes. To determine the reason for this behavior, studies at the University of Kansas have addressed the effects of aggregate type, water-cementitious material ratio, and age on the mechanical and fracture properties of normal and high-strength concretes. The relationships between compressive strength, flexural strength, and fracture properties were studied. At the time of test, concrete ranged in age from 5 to 180 days. Water-cementitious material ratios ranged from 0.24 to 0.50, producing compressive strengths between 20 MPa(2, 920 psi) and 99 MPa(14, 320psi). Mixes contained either basalt or crushed limestone aggregate, with maximum sizes of 12mm(1/2in). or 19mm(3/4in). The tests demonstrate that the higher quality basalt coarse aggregate provides higher strengths in compression than limestone only for the high-strength concrete, but measurably higher strengths in flexure, and significantly higher fracture energies than the limestone coarse aggregate at all water-cementitious material ratios and ages. Compressive strength, water-cementitious material ratio, and age have no apparent relationship with fracture energy, which is principally governed by coarse aggregate properties. The peak bending stress in the fracture test is linearly related to flexural strength. Overall, as concrete strength increases, the amount of energy stored in the material at the peak tensile load increases, but the ability of the material to dissipate energy remains nearly constant. This suggests that, as higher strength cementitious materials are placed in service, the probability of nonductile failures will measurably increase. Both research and educational effort will be needed to develop strategies to limit the probability of brittle failures and inform the design community of the nature of the problems associated with high-strength concrete.

  • PDF

Bond Capacity of Near-Surface-Mounted CFRP Plate to Concrete Under Various Temperatures (콘크리트에 표면매입 보강된 탄소섬유 판의 온도에 따른 부착성능)

  • Seo, Soo-Yeon;Kim, Jeong-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.75-83
    • /
    • 2013
  • This paper presents a series of test result in order to study fire resistance capacity of the Near-Surface-Mounted (NSM) Carbon Fiber Reinforced Polymer (CFRP) plate, which are tensile test of CFRP under various temperature loading, temperature loading test of epoxy and bond test of NSM CFRP to concrete under various temperature loading. From the tests, it was found that NSM retrofit method had high efficiency in strengthening concrete under ordinary temperature. However, the strength of the system was able to be drastically decreased even a little increase of surrounding temperature. Especially, bond capacity begins to disappear when the surrounding temperature approaches the glass transition temperature of epoxy. Therefore, it is necessary to improve the fire resistance capacity of both fiber reinforced polymer reinforcement and epoxy for bonding in order to develop safe fire resistance design of structure.

Comparative Study on Test Methods for Mechanical Properties of Structural Adhesives Used in FRP Strengthening (구조보강용 FRP 함침·접착수지의 역학적 특성 분석을 위한 시험방법 비교 연구)

  • You, Young Chan;Choi, Ki Sun;Kim, Keung Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.103-112
    • /
    • 2008
  • Pull-off test is generally used to evaluate bond strength of FRP composite with concrete at job site. However, some damages on FRP composites can not be avoided during pull-off test and moreover test range of pull-off strength is limited by maximum tensile strength of concrete. Accordingly, it is required to set-up a test method that can evaluate mechanical properties of structural adhesive indirectly prior to pull-off test. In this study, the standard test methods for structural adhesive which can simply evaluate mechanical performance of adhesive were suggested through comparative experiments from each different standard in various countries. Particularly, gluing thickness of adhesive in tensile lap-shear tests, the section dimension of compression and bending test specimens become unified, and standard test specimen size is achieved by test results.