• Title/Summary/Keyword: Tensile Stress

Search Result 2,786, Processing Time 0.042 seconds

Tensile Stress-Strain Relation of ECC (Engineered Cementitious Composite) Accounting for Bridging Curve (실제 균열면응력-변위 곡선을 고려한 ECC의 1축 인장거동 관계)

  • Kim, Jeong-Su;Lee, Bang Yeon;Kwon, Seong-Hee;Kim, Jin-Keun;Kim, Yun Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.933-936
    • /
    • 2008
  • An engineered cementitious composite (Engineered Cementitious Composite) had been developed in previous study. Theoretical prediction of the tensile stress-strain relation of ECC is important in providing the material constitutive relation necessary for designing structural members. But, few studies have been reported with regard to predicting the tensile stress-strain relation of ECC. Prediction of the tensile stress-strain relation of ECC accounting for actual bridging curve, such as fiber dispersion is needed. The present study extends the work as developed by Kanda et al., by modeling the bridging curve, accounting for fiber dispersion, the degree of matrix spalling, and fiber rupture to predict the tensile stress-strain relation of ECC. The role of material variation in the bridging curve, such as number of effective fiber actually involved in the bridging capacity and how it affects the multiple cracking process is discussed. The approach for formulating the tensile stress-strain relation is discussed next, where the procedure for obtaining the necessary parameters, such as the crack spacing, is presented. Finally, the predicted stress-strain relation will be validated with experimental tests results.

  • PDF

Dynamic tensile behavior of PMMA (PMMA의 동적 인장 거동)

  • Lee, Ouk-Sub;Kim, Myun-Soo;Hwang, Si-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.395-400
    • /
    • 2001
  • The Split Hopkinson Pressure Bar(SHPB) technique, a special experimental apparatus, has been used to obtain the material behavior under high strain rate loading condition. In this paper, dynamic deformation behaviors of the PMMA under high strain rate tensile loading are determined using SHPB technique.

  • PDF

Determination of a critical damage by experiment and analysis of tensile test (인장시험의 실험과 해석 결과를 이용한 임계손상도의 결정)

  • Jang, S.M.;Eom, J.G.;Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.292-296
    • /
    • 2008
  • A new method of evaluating critical damage values of commercial materials is presented in this paper. The method is based on the previous study of the methodology [1] of acquisition of true stress-strain curves or flow stress curves over large strain from the tensile test in which the flow stress is described by the Hollomon law-like form, that is, by the strain dependent strength coefficient and the strain hardening exponent. The strain hardening exponent is calculated from the true strain at the necking point to meet the Considere condition. The strength coefficient is assumed to be constant before necking and represented by a piecewise linear function of strain after necking. With the predicted flow stress, a tensile test is simulated by a rigid-plastic finite element method with higher accuracy of less than 0.5% error between experiments and predictions. The instant when the fracture begins and thus the critical damage is obtained is determined by observing the stress variation at the necked region. It is assumed that the fracture due to damage begins when the pattern of stress around the necked region changes radically. The method is applied to evaluate the critical damage of a low carbon steel.

  • PDF

Experimental study on the relationship between direct tensile stress and crack opening displacement of UHPC (UHPC의 직접인장응력과 균열개구변위와의 관계에 관한 실험적 연구)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Koh, Gyung-Taek;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.433-436
    • /
    • 2008
  • In order to estimate the mechanical properties of ultra high performance concrete, the most important is to evaluate its tensile behavior. The tensile behavior of concrete is generally characterized by the elastic behaviour before cracking and tensile stress-crack width relationship after cracking. We carried out the direct tensile and flexural tensile test and compared the tensile behaviors obtained by the direct tensile test and by inverse analysis of the flexural tensile test results. We compared the obtained tensile behavior with that of JSCE recommendations for ultra high performance concrete as well. we could see that the tensile stress-crack width relationship obtained from the flexural tensile test results using inverse analysis had good agreement with directly obtained tensile behaviour with direct tensile test and showed similar tensile softening behaviour introduced in JSCE recommendations for ultra high performance concrete.

  • PDF

Dynamic Tensile Characteristics of the High Strength Steel Sheet for an Auto-body (차체용 고장력 강판의 동적 인장 특성 평가)

  • Kim, Seok-Bong;Huh, Hoon;Shin, Chirl-Soo;Kim, Hyo-Kun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.171-176
    • /
    • 2007
  • An important challenging issue in the automotive industry is the light-weight, safe design and enhancement of crash response of an auto-body structures. These objectives lead to increasing adoption of high strength steel sheet for inner and outer auto-body members. This paper evaluates the dynamic tensile characteristics of high strength steel sheets, HS45R, TRIP60, DP60 and DP100, along the rolling direction and transverse direction. Static tensile tests were carried out at the strain rate of 0.003/sec using the static tensile machine (Instron 5583). Dynamic tensile tests were carried out at the range of strain rate from 0.1/sec to 200/sec using a high speed material testing machine developed. The tensile tests acquire stress-strain relation and strain rate sensitivity of each material. The experimental results show two important aspects for high strength steels: the flow stress increases as strain rate increases; the strain hardening decreases as the tensile stress increases. The experiments also produce interesting results that the elongation does not decrease even when the strain rate increases.

A Study on the Shape Memory Characteristic Behaviors of Ti-42.5at%Ni-10at.% Cu Alloys (Ti-42.5at.%Ni-10at.%Cu합금의 형상기억특성에 관한 연구)

  • Woo, Heung-Sik;Park, Yong-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.26-30
    • /
    • 2009
  • Shape memory recoverable stress and strain of Ti-42.5at%Ni-10at%Cu alloys were measured by means of constant temperature tensile tests. The alloys' transformation behavior is B2 - B19 by DSC result. The strain by tensile stress were perfectly recovered by heating at any testing conditions but shape memory recoverable stress increased to 66MPa and then slightly decreased. Transformation temperatures from thermal cycling under constant uniaxial applied tensile loads linearly increased by increasing tensile load and their thermal hysteresis are about 110K and their maximum recoverable strain is 6.5% at 100MPa condition.

ASSESSMENT OF POSSIBILITY OF PRIMARY WATER STRESS CORROSION CRACKING OCCURRENCE BASED ON RESIDUAL STRESS ANALYSIS IN PRESSURIZER SAFETY NOZZLE OF NUCLEAR POWER PLANT

  • Lee, Kyoung-Soo;Kim, W.;Lee, Jeong-Geun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.343-354
    • /
    • 2012
  • Primary water stress corrosion cracking (PWSCC) is a major safety concern in the nuclear power industry worldwide. PWSCC is known to initiate only in the condition in which sufficiently high tensile stress is applied to alloy 600 tube material or alloy 82/182 weld material in pressurized water reactor operating environments. However, it is still uncertain how much tensile stress is re-quired to generate PWSCC or what causes such high tensile stress. This study was performed to pre-dict the magnitude of weld residual stress and operating stress and compare it with previous experi-mental results for PWSCC initiation. For the study, a pressurizer safety nozzle was selected because it is reported to be vulnerable to PWSCC in overseas plants. The assessment was conducted by nu-merical analysis. Before performing stress analysis for plant conditions, a preliminary mock-up ana-lysis was done. The result of the preliminary analysis was validated by residual stress measurement in the mock-up. After verification of the analysis methodology, an analysis under plant conditions was conducted. The analysis results show that the stress level is not high enough to initiate PWSCC. If a plant is properly welded and operated, PWSCC is not likely to occur in the pressurizer safety nozzle.

Reduction of residual stress for welded joint using vibrational load

  • Aoki, Shigeru;Nishimura, Tadashi;Hiroi, Tetsumaro
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.355-365
    • /
    • 2004
  • A new reduction method of residual stress in welding joint is proposed where welded metals are shaken during welding. By an experiment using a small shaker, it can be shown that tensile residual stress near the bead is significantly reduced. Since tensile residual stress on the surface degrades fatigue strength for cumulative damage, the proposed method is effective to reduction of residual stress of welded joints. The effectiveness of the proposed method is demonstrated by the response analysis using one mass model with nonlinear springs.

The Characteristics of Electrical Breakdown of Dielectric Paper and Cable under mechanical stress (기계적 응력상태에서 절연지 및 케이블의 전기절연 특성)

  • Kim, Young-Seok;Kwag, Dong-Soon;Kim, Hae-Jong;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.3-6
    • /
    • 2003
  • The electrical and mechanical properties of dielectric paper and cable at cryogenic temperature have been investigated to optimum insulating design of high-Tc superconducting(HTS) cable. From the results, Tensile strength of PPLP in liquid nitrogen was high more than that of air, but tensile strain could know that decrease sharply. According as tensile strength increases, the breakdown stress of PPLP in liquid nitrogen was decreased because PPLP was degradated. According as bending radius multiple is decrese, breakdown voltage decreased sharply. And bending radius multiple is thought that more than about 25 is suitable.

  • PDF

Theoretical analysis of tensile stresses and displacement in orthotropic circular column under diametrical compression

  • Tsutsumi, Takashi;Iwashita, Hiroshi;Miyahara, Kagenobu
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.333-347
    • /
    • 2011
  • This paper shows the solution for an orthotropic disk under the plane strain condition obtained with complex stress functions. These stress functions were induced by Lekhnitskii and expanded by one of the authors. Regarding diametrical compression test, the finite element method poses difficulties in representing the concentrated force because the specimens must be divided into finite elements during calculation. On the other hand, the method shown in this study can exactly represent this force. Some numerical results are shown and compared with those obtained under the plane stress condition for both stress and displacement. This comparison shows that the differences between the tensile stresses occurred under the plane strain condition and also that the differences under a plane stress condition increase as the orthotropy ratio increases for some cases.