• 제목/요약/키워드: Tensile Stress

검색결과 2,809건 처리시간 0.028초

Advanced Indentation System을 이용한 천연가스배관 용접열영향부의 응력-변형률 변화 특성 분석 (Evaluation of Stress-Strain Characteristics of Weldment in Natural Gas Pipeline Using Advanced Indentation System)

  • 장재일;손동일;권동일;김우식;박주승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.483-488
    • /
    • 2001
  • Until now, the tensile properties of materials can be obtained just in accordance with conventional tensile testing methods which are described in several standards such as ASTM (American Society for Testing and Materials) standard and BS (British Standard). For some cases including on-service facility materials, however, the standard testing methods cannot be applicable due to the destructive testing procedure and specimen size requirement. Therefore, simple, non-destructive and advanced indentation technique was proposed. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. In this paper, the research trend of non-destructive evaluation of tensile properties using AIS (advanced indentation system) and its application fields are reviewed and discussed.

  • PDF

Nd:YAG 레이저를 이용한 비정질 박판 용접부의 파괴에 대한 실험적 연구 (An experimental study on the fracture of Nd:YAG laser welded amorphous foils)

  • 이건상
    • 한국레이저가공학회지
    • /
    • 제3권3호
    • /
    • pp.31-37
    • /
    • 2000
  • In this paper, the possibilities of the laser overlap spot welding were studied to utilize the advantageous properties of amorphous metal foils. In order to estimate the usage of amorphous metals foils as structural members, the tensile shear strength and the fracture features were investigated. Although the crystalline zone on the surface was formed, it was not the direct cause of the fracture of the weld. The fracture of the weld resulted from the geometry discontinuity between the workpiece and the protrusion zone, which was formed during the weld process. The vein pattern - the typical feature of the fracture of the amorphous metal - was formed on the fracture surface. The tensile shear stress was reached to 1200 N/㎟ (2-foils overlap welding) and 900 N/㎟ (10-foils overlap welding), whereas the tensile strength of the workpiece was 1500-2000 N/㎟.

  • PDF

터빈 디스크용 스테인리스강의 고온 인장 및 저주기 피로 물성 측정 (Evaluation of high temperature tensile behavior and LCF properties of stainless steel for turbine disks)

  • 임형대;박철규;이광주;임성한;김춘택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.334-337
    • /
    • 2007
  • Austenitic stainless steel is used as high temperature components such as gas turbine blade and disk because of its good thermal resistance. In the present investigation, tensile and low cycle fatigue(LCF) behavior of stainless steel for turbine disks was studied at wide temperature range $20^{\circ}C\;{\sim}\;750^{\circ}C$. In the tensile tests, it was shown that elastic modulus, yield strength, ultimate tensile strength decreased when temperature increased. The effect on fatigue failure of the parameters such as plastic strain amplitude, stress amplitude and plastic strain energy density was also investigated. Coffin-Manson and Morrow models were used to adjust experimental data and predict the fatigue life behavior at different mean strain values during cyclic loading of high temperature components.

  • PDF

강섬유 보강 초고성능 콘크리트(UHPFRC) I형 보의 전단 강도 (Shear Strength of Ultra-High Performance Fiber-Reinforced Concrete(UHPFRC) I-shaped Beams without Stirrup)

  • 이지형;홍성걸
    • 콘크리트학회논문집
    • /
    • 제29권1호
    • /
    • pp.53-64
    • /
    • 2017
  • 강섬유 보강 초고성능 콘크리트(UHPFRC)는 높은 압축강도 뿐 아니라 강섬유 보강에 의한 뛰어난 응력분산효과로 인해 높은 인장강도를 가지며, 미세균열의 확장을 통해 균열 후에도 경화거동을 하여 구조부재가 안정적으로 외력에 저항하도록 한다. 본 연구에서는 UHPFRC 재료 인장강도를 정의함에 있어 노치가 있는 휨실험과 직접인장실험을 비교하여 실험법 및 결과 분석의 장단점을 알아보았다. I-형 보의 전단부재실험은 복부의 면내전단거동을 알아보기 위하여 전단 경간비, 유효높이, 재료인장강도를 변수로 계획하였다. 실험결과를 통해 전단보강근이 없는 UHPFRC I형 보의 균열발생 이후 전단거동의 응력 재분배효과를 정량적으로 판단하고, 균열 후 거동을 기존 전단 강도식이 잘 반영하고 있는지 검토하였다. 전단철근 보강이 없는 UHPFRC 전단부재의 경우 파괴모드는 사인장 파괴로 동일하였고, 이러한 파괴모드를 가지는 부재는 전단 경간비와 유효높이에 크게 영향을 받게 되어 부재 설계 시 이러한 변수에 대한 고려가 필요한 것으로 나타났다.

AISI 304강의 상온/고온 인장특성에 관한 연구 (A Study on Tensile Characteristics of AISI 304 Stainless Steel under Room and Elevated Temperatures)

  • 박성호;박노석;김재훈
    • 한국추진공학회지
    • /
    • 제12권5호
    • /
    • pp.35-42
    • /
    • 2008
  • 본 연구는 AISI 304강의 상온 및 고온 인장실험을 수행한 결과이다. 항공구조재료로 널리 사용되고 있는 AISI 304강의 인장실험을 ASTM 규정에 따라 상온 및 고온에서 수행하였다. A Basis와 B Basis 인장강도를 평가하기 위하여 정규확률지를 사용하였다. 응력과 소성변형률과의 관계를 지수함수로 가정하는 Ramberg-Osgood 파라미터는 시험데이터의 최소제곱추정을 이용하여 구하였다. 인장실험 후 시험편의 표면을 SEM 영상과 EDX를 사용하여 관찰하였다.

TRIP형 복합조직강의 미세조직 및 인장성질에 미치는 화학조성의 영향 (Effect of Chemical Composition on the Microstructure and Tensile Property in TRIP-assisted Multiphase Steels)

  • 이기열;장우양;강조원
    • 열처리공학회지
    • /
    • 제16권3호
    • /
    • pp.127-133
    • /
    • 2003
  • The effect of chemical composition on the microstructural change and tensile property in TRIP-assisted steels with different chemical composition was investigated by using SEM, TEM, XRD and UTM. As a result of microscopic observation, the morphology of retained austenite could be identified as two types; a granular type in a steel containing higher Si and a film type in a steel having higher C. For the case of higher C-containing steel with a tensile strength of 860 MPa and a total elongation of 38%, film-typed retained austenite could be observed between lath bainitic ferrite. Actually, metastable retained austenite was a requisite for the good formability, which means that chemical composition plays a significant role in the microstructure and tensile property of TRIP-assisted steels. With respect to tensile property, the steels containing suitable Si and Mn, respectively, showed a typical TRIP effect in stress-strain curve, while a steel containing higher Mn content exhibited the similar behavior shown in dual phase steel.

차량구조용 변태유기소성(TRIP)형 복합조직강의 인장성질에 미치는 화학조성의 영향 (Effect of Chemical Composition on Tensile Property in TRIP-assisted Multiphase Steel for Automobile Structure)

  • 이기열;방일환;마아람;김영순
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.106-113
    • /
    • 2007
  • The effect of chemical composition on the microstructural change and tensile property in TRIP-assisted steels with different chemical composition was investigated by using SEM, TEM, XRD and UTM. As a result of microscopic observation, the morphology of retained austenite could be identified as two types : a granular type in a steel containing higher sillicon and a film type in a steel having higher carbon. For the case of higher carbon-containing steel with a tensile strength of 860 MPa and a total elongation of 38%, film-typed retained austenite could be observed between lath bainitic ferrite. Actually, metastable retained austenite was a requisite for the good formability, which means that chemical composition plays a significant role in the microstructure and tensile property of TRIP-assisted steels. With respect to tensile property, the steels containing suitable silicon and manganese, respectively, showed a typical TRIP effect in stress-strain curve, while a steel containing higher manganese content exhibited the assimilar behavior shown in dual phase steel.

SUS304계열 강판의 동적인장특성 (Dynamic tensile characteristics of SUS304L steel sheets)

  • 김진성;허훈;이장욱;권태수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.360-363
    • /
    • 2007
  • This paper deals with the dynamic tensile characteristics of the steel sheets for structural members of a train. Train accidents occurs rarely but lead to many casualties and economical loss. Therefore the safety of the train becomes important during the train crash. The dynamic tensile characteristics of the steel sheets are indispensable to analyze the structural crashworthiness. Current research reports the stress-strain curves, fracture elongation and strain rate sensitivities evaluated at the various strain rates especially for SUS304L-ST and SUS304L-LT steel sheets. The results include the difference in the dynamic tensile characteristics of both rolling and transverse directions. Dynamic tensile tests were performed at the strain rates ranging from 0.003/sec to 200/sec using High Speed Material Testing Machine. The materials tested in this research shows interesting behavior at the low strain rates. The strain hardening exponent decreases remarkably while the yield strength increases.

  • PDF

Influence of Dynamic Strain Aging on Tensile Deformation Behavior of Alloy 617

  • Ekaputra, I.M.W.;Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1387-1395
    • /
    • 2016
  • To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of $10^{-3}/s$, $10^{-4}/s$, and $10^{-5}/s$ from $24^{\circ}C$ to $950^{\circ}C$. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress-strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from $200^{\circ}C$ to $700^{\circ}C$. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above $700^{\circ}C$ was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates.

AZ31 마그네슘 합금판재의 소성변형특성 (Plastic Deformation Characteristic of AZ31 Magnesium Alloy Sheet)

  • 박진기;;유봉선;김영석
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.520-526
    • /
    • 2005
  • In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile tests of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile tests were performed until $7{\%}$ of engineering strain. Lankford values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci were calculated by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. In this study, Hill's 1979 yield function for the case of m=2.8 and Logan-Hosford yield function for the case of M=8 give good agreements with experimental results. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5{\%}$ of equivalent strain at biaxial tensile test.