• 제목/요약/키워드: Tensile Strength and Hardness

검색결과 858건 처리시간 0.025초

STUDY ON WELDABILITY OF CU (OFC) BY FRICTION STIR WELDING

  • Bang, Keuk-saeng;Lee, Won-bae;Yeon, Yun-mo;Jung, Seung-boo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.522-527
    • /
    • 2002
  • The microstructure and mechanical properties of friction stir welded OFC plates with 2mm in thickness were examined with the changing welding parameters such as welding speed, rotation speed in this study. The sounding welding conditions was acquired at the optimum welding conditions of the 41mm/min to 61mm/min of welding speed at 1250 rpm of rotation speed. The microstructure of weld zone was divided into four parts such as the base metal region (EM), thermal mechanical affected zone (TMAZ), heat affected zone (HAZ), stir zone (SZ). The grain size in the SZ and the width of weld nugget were increased with increasing welding speed. The hardness profiles of the base metal were distributed about 80HV. The HAZ is a slightly softened region of about 60~75 HV relative to the base metal. The hardness profiles of the SZ were higher than that of base metal. The tensile strength was increased with increasing welding speed. In case increasing rotation speed, tensile strength was decreased. The maximum tensile strength was about 220:MPa which was 110% of joint efficience of that of base metal at 41mm/min of welding speed, 1250rpm of rotation speed.

  • PDF

ECAP 가공에 의해 제조된 초미세립 OFHC Cu 봉재의 미세조직 및 기계적 특성의 균질성 (Homogeneity of Microstructure and Mechanical Properties of Ultrafine Grained OFHC Cu Bars Processed by ECAP)

  • 지정훈;박이주;김형원;황시우;이종수;박경태
    • 대한금속재료학회지
    • /
    • 제49권6호
    • /
    • pp.474-487
    • /
    • 2011
  • Bars of OFHC Cu with the diameter of 45 mm were processed by equal channel angular pressing up to 16 passes via route $B_c$, and homogeneity of their microstructures and mechanical properties was examined at every four passes which develop the equiaxed ultrafine grains. In general, overall hardness, yield strength and tensile strength increased by 3, 7, and 2 times respectively compared with those of unECAPed sample. Cross-sectional hardness exhibited a concentric distribution. Hardness was the highest at the center of bar and it decreased gradually from center to surface. After 16 passes, overall hardness decreased due to recovery and partial recrystallization. Regardless of the number of passage, yield strength and tensile strength were quite uniform at all positions, but elongation showed some degree of scattering. At 4 passes, coarse and ultrafine grains coexisted at all positions. After 4 passes, uniform equiaxed ultrafine grains were obtained at the center, while uniform elongated ultrafine grains were manifested at the upper half position. At the lower half position, grains were equiaxed but its size were inhomogeneous. It was found that inhomogeneity of grain morphology and grain size distribution at different positions are to be attributed to scattering in elongation but they did not affect strength. The present results reveal the high potential of practical application of equal channel angular pressing on fabrication of large-sized ultrafine grained bars with quite homogeneous mechanical properties.

Mechanical performance of additively manufactured austenitic 316L stainless steel

  • Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.244-254
    • /
    • 2022
  • For tensile tests, Vickers hardness tests and microstructure tests, plate-type and box-type specimens of austenitic 316L stainless steels were produced by a conventional machining (CM) process as well as two additive manufacturing processes such as direct metal laser sintering (DMLS) and direct metal tooling (DMT). The specimens were irradiated up to a fast neutron fluence of 3.3 × 109 n/cm2 at a neutron irradiation facility. Mechanical performance of the unirradiated and irradiated specimens were investigated at room temperature and 300 ℃, respectively. The tensile strengths of the DMLS, DMT and CM 316L specimens are in descending order but the elongations are in reverse order, regardless of irradiation and temperature. The ratio of Vickers hardness to ultimate tensile strength was derived to be between 3.21 and 4.01. The additive manufacturing processes exhibit suitable mechanical performance, comparing the tensile strengths and elongations of the conventional machining process.

플라스틱 직물 코팅재료에 관한 연구 (Study on Plastic Fiber Coating Materials)

  • 김동학;김태완
    • 한국산학기술학회논문지
    • /
    • 제4권1호
    • /
    • pp.42-46
    • /
    • 2003
  • 섬유 코팅제로 널리 쓰이고 있는 액상 PVC는 여러 가지 특성 중 무광택 효과가 뛰어나지만 코팅된 섬유 표면의 유연성이 감소된다. 이런 결함을 대체할 수 코팅 물질로 Elastomer계열의 액상 실리콘 고무를 사용했다. 기존 액상 PVC공정과 동일하게 진행했으며, 로울러의 압축력과 공정상의 예비경화를 이용했다. 실험 결과 액상 PVC로 코팅된 직물의 경도는 70E, 인장강도는 10.3 MPa, 신율은 200%로 측정되었다. 액상 실리콘 고무로 코팅된 직물의 경도는 40도, 인장강도는 5.1 MPa, 신율은 460%,였다. 따라서 액상 실리콘 고무 코팅은 3차 가공 없이 액상 PVC 코팅보다 플라스틱 직물 표면의 무광택성과 유연성을 증가시켰다.

  • PDF

Hybrid Glass Ionomer cement의 비커스경도와 간접인장강도에 관한 연구 (A STUDY ON THE VICKER'S HARDNESS AND DIAMETRAL TENSILE STRENGTH OF HYBRID GLASS IONOMER)

  • 권균원;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제22권2호
    • /
    • pp.505-518
    • /
    • 1997
  • The objective of this investigation was to compare the effects of water storage on the aspect of hardness and diametral tensile strengths of four hybrid glass ionomer cements(two compomers and two resin-reinforced glass ionomers) with a resin composite material. One composite resin(Degufill Ultra), two compomers(Dyract, Compoglass Cavifil), and two resin-reinforced glass ionomers(Fuji Duet, Vitremer) were used in this study. Cylindrical specimens were prepared and stored at $36{\pm}1^{\circ}C$ in distilled water for 10 minutes after set, and then tested on an Instron testing machine(No.4467) at 1.0 mm/min displacement rate. Vicker's hardness and diametral tensile strengths as time elapsed were measured after aging in water for 10 minutes, 1 hour, 3 hours, 1 day, 3 days, 5 days and 7 days at $36{\pm}1^{\circ}C$. During the test of diametral tensile strength, stress-strain curves were obtained, from which the compressive modulus were calculated and compared. The structure of four set glass ionomer cement mass was observed on SEM(Hitachi, S-2300) after being etched with 9.6% hydrofluoric acid for 1 minute. The results were as follows; 1. The hardness of the experimental group(compomer and the resin reinforced glass ionomer cement) did not exceed the value of control group(Degufill Ultra). 2. Vicker's hardness of the Fuji Duet tended to increase succeedingly, Dyract was decreased after 3 hours in water, and Vitremer was the lowest. 3. The control group(Degufill Ultra) presented progressively on increased diametral tensile strength with time, Fuji Duet were decreased after 3 days, Compoglass Cavifil and Vitremer were decreased after 5 days in water storage. 4. Compressive modulus of the control group(Degufill Ultra) and Dyract were increased sharply timely, Fuji Duet and Vitremer were increased smoothly by lapse of time in water. Fuji Duet were stronger than Vitremer. On the other hand, Vitremer exhibited the lowest toughness. 5. The microstructure of compomer was similar with that of the composite resin(Degufill Ultra), and the fillers in resin-reinforced glass ionomer cements were noticed. It can be concluded that mechanical properties of hybrid glass ionomer cements is weaker than composite resin, and that the compomers or the resin-reinforced glass ionomers can not substitute the composite resins. A plenty of considerations should be done on the application of them to the area under the loading and high wear has a little adverse effect on the mechanical properties on the water storage for 7 days. The further research should be needed to confirm the advantage of the compomer.

  • PDF

템퍼링에 따른 Cu 첨가 고강도강의 미세조직과 기계적 특성 (Effects of Tempering Treatment on Microstructure and Mechanical Properties of Cu-Bearing High-Strength Steels)

  • 이상인;황병철
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.550-555
    • /
    • 2014
  • The present study deals with the effects of tempering treatment on the microstructure and mechanical properties of Cu-bearing high-strength steels. Three kinds of steel specimens with different levels of Cu content were fabricated by controlled rolling and accelerated cooling, ; some of these steel specimen were tempered at temperatures ranging from $350^{\circ}C$ to $650^{\circ}C$ for 30 min. Hardness, tensile, and Charpy impact tests were conducted in order to investigate the relationship of microstructure and mechanical properties. The hardness of the Cu-added specimens is much higher than that of Cu-free specimen, presumably due to the enhanced solid solution hardening and precipitation hardening, result from the formation of very-fine Cu precipitates. Tensile test results indicated that the yield strength increased and then slightly decreased, while the tensile strength gradually decreased with increasing tempering temperature. On the other hand, the energy absorbed at room and lower temperatures remarkably increased after tempering at $350^{\circ}C$; and after this, the energy absorbed then did not change much. Suitable tempering treatment remarkably improved both the strength and the impact toughness. In the 1.5 Cu steel specimen tempered at $550^{\circ}C$, the yield strength reached 1.2 GPa and the absorbed energy at $-20^{\circ}C$ showed a level above 200 J, which was the best combination of high strength and good toughness.

치과용 가시광선 중합형 복합수지의 새로운 광개시제에 관한 연구 (A Study on new Photoinitiator of Visible Light Dental Composite Resin)

  • 최용석;선금주
    • 대한치과기공학회지
    • /
    • 제23권2호
    • /
    • pp.49-59
    • /
    • 2002
  • The photopolymerization efficiency and surface hardness of composite resin containing 1,2-phenylpropanedione (PD) and diacetyl (DA) as photoinitiators were studied by IR and Vickers hardness and the results were compared with that of camphorquinone (CQ). Relative photopolymerization efficiency of the photoinitiators increased in the order of DA < CQ < PD. Vickers hardness of composite resin containing the photoinitiators increased in the order of CQ < PD < DA. Thus, PD is a new visible light photoinitiator for dental composite resin with higher photopolymerization efficiency and surface hardness than that of CQ. Mechanical properties such as Vickers hardness, diametral tensile strength, and flexural strength of the experimental resin composite prepared by addition of the photosensitizer into a resin of bis-GMA improved with increasing the photosensitizer content and irradiation time. The resin composite of bis-GMA containing DA or PD shows better mechanical properties than that of CQ.

  • PDF

複合組織鋼의 衝擊破壞特性에 미치는 노치形狀 및 硬度比의 영향 (Effect of notch shape and hardness ratio on characteristics of impact fracture in dual phase steels)

  • 김정규;유승원;김일현
    • 오토저널
    • /
    • 제10권2호
    • /
    • pp.46-53
    • /
    • 1988
  • Effect of Notch Shape and Hardness Ratio on Characteristics of Impact Fracture in Dual Phase Steels. In this study, it is investigated the effect of notch shape and hardness ratio on the characteristics of impact fracture in dual phase steels. The impact test was carried out at the temperature range from -40.deg. C to room temperature with Instrumented Charpy Impact Tester. The main results obtained are as follows; 1, The maximum impact bending strength (.sigma.$_{max}$) increases with the tensile strength. Also, the impact energy depends on .sigma.$_{max}$. 2, In room temperature, the impact energy depends on crack-initiation energy (E$_{i}$) in case of the high hardness ratio (R=3.4), whereas depends on crack-propagation energy (E$_{p}$) in case of the low hardness ratio (R=1.8) and the dependence of crack-initiation energy of the impact characteristics decreases with increasing test temperature. These phenomena are result from the difficulty of cleavage facet formation.ion.ion.

  • PDF

자동차용 피스톤의 성형기술과 기계적 성질의 개선에 관한 연구 (A Study on the Forming Technologies for a Motor Piston and Improvement of Mechanical Properties)

  • 김길준;박종옥;김영호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.842-845
    • /
    • 2000
  • The purpose of this paper is to investigate the influences on mechanical properties of motor pistons manufactured by casting, conventional forging and powder forging, using the comparison of characteristics like microstructure, hardness, tensile strength, and elongation. To form conventional forging piston, the experiment of visioplasticity was performed. As the model material, plasticine was used. To form powder forging piston, the shape of piston was simplified as simple cup shape. Material properties like workability, density variation before and after forging, and strain loci of material during forging were investigated. Powder forging and conventional forging technologies were effective to gain dense microstructure. In powder forging, distribution of such dense microstructuer was uniform. For hardness, pistons from powder forging and conventional forging technologies were much better than that from casting. For tensile strength and elongation, powder forging and conventional forging technologies were also advantageous.

  • PDF

Al-8wt.%Fe 분말의 기계적 합금화 거동과 열적안정성에 미치는 Ce의 영향 (Effects of Ce on the Mechanical Alloying Behavior and Thermal Stability of Al-8wt.%Fe Powder)

  • 오광진
    • 한국분말재료학회지
    • /
    • 제1권1호
    • /
    • pp.4-14
    • /
    • 1994
  • The effects of Ce on the mechanical alloying behavior and the thermal stability of Al-8wt.%Fe were investigated. The steady states of Al-8wt.%Fe and Al-8wt.%Fe-4wt.%Ce powders with 1.5 wt.% stearic acid as a process control agent were reached after mechanical alloying for 1000 minuties and 1300 minuties respectively at the conditions of the impeller revolving velocity of 300 rpm and the ball to powder input ratio of 50 : 1. The hardness of Al-8wt.%Fe specimen hot extruded and isothermally aged at various temperatures for up to 1000 hours decreased rapidly at 50$0^{\circ}C$ and its high temperature ultimate tensile strength began to decrease at 40$0^{\circ}C$ with increasing aging time. The decrease in the hardness and ultimate tensile strength of the specimen were reduced substantially by addition of Ce. It was thought to be due to the formation of thermally stable A14Ce and All3Fe3Ce intermetallic compounds.

  • PDF