• Title/Summary/Keyword: Tensile Strength and Hardness

Search Result 858, Processing Time 0.022 seconds

Effects of Sweat on the Metal Frames of Eyeglasses (땀이 금속안경테에 미치는 영향)

  • Kim, So Ra;Choi, Myung Jin;Hwang, Jae Weon;Kim, Myung Soo;Chung, Seo Young;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • Purpose: In this paper, the changes in eyeglasses frames were investigated when the frames were exposed to artificial sweat. Methods: The changes in surface, hardness, and tensile strength of eyeglasses frames made of nickel silver, Monel, and titanium were tested after the exposure to the artificial sweat of pH 6.5, 6.0, and 5.0, during 1, 3, and 6 week(s), for each. Results: Corrosion pattern of eyeglasses frames made of nickel silver, Monel, and titanium was induced by artificial sweat, and the patterns were different from another frame materials. In proportion to the pH of artificial sweat and exposure time to artificial sweat, hardness of all frames made of three different material decreased, however, tensile strength of the three frames was not changed. Conclusions: The necessity of routine management for eyeglasses frames can be suggested since the changes in surface corrosion and hardness of eyeglasses frames induced by sweat were shown.

Roles of Fundamental and Additional Hardening Precipitates on the Changes of Mechanical Properties and Electrical Resistivity in Al-Li Alloys Containing Cu and Mg (Cu, Mg을 함유한 Al-Li 합금의 기계적 성질과 전기저항 변화에 미치는 기본 및 추가 강화상들의 역할)

  • Chung, D.S.;Song, K.H.;Woo, K.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.2
    • /
    • pp.77-87
    • /
    • 1994
  • Roles of fundamental and additional hardening precipitates on the changes of mechanical properties and electrical resistivity during precipitation decomposition in binary Al-Li, ternaty Al-Li-Cu and multi-Li-Cu-Mg-Zr alloys have been investigated by the detailed measurement of electrical resistivity, hardness and tensile strength and the observation of transmission electron micrographs. Peek hardness and tensile strength in multi-component Al-Li-Cu-Mg-Zr Alloy had higher than that of the other alloys and the results of measurement of hardness, strength and electrical resistivity in each alloys aged at 90 and $190^{\circ}C$, precipitation behaviors and mechanical properties in binary, ternary and multi-component Al-Li alloys were contributed to the ${\delta}^{\prime}$ precursory phase of ${\delta}^{\prime}$, $T_1$, G.P.B. zone and S' phases, repectively.

  • PDF

The Study on the Mechanical Properties and Formability of Non-Heat-Treated Cold Forging Steels (냉간 단조용 비조질강의 성형성과 기계적성질 연구)

  • Lee, Yeong-Seon;Lee, Jeong-Hwan;Lee, Sang-Yong
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.530-538
    • /
    • 1998
  • Elimination of the heat treatment process is very important in automation of metal forming since controlling heat treatment by computer has many difficulties and it has bottle neck problem. non-heat-treated steels materials which are not in need of heat treatment have been developed for cold forging. However to apply non-heat-treated steel to structural parts. it is necessary to prove reliability of mechanical properties. In order to define the reliability of mechanical properties we have investigated microstructure, hardness, the tensile strength compressive strength and tensile fatigue strength for both steels. Considering the results of high cycle fatigue test for both specimen the characteristics of non-heat-treated steel are decided on the yield strength, It has same tendency for heat-treated steel. Therefore non-heat-treated steel which has the appropriate yield strength may be applied in cold forging.

  • PDF

Effect of Si and Ca Addition on the Strengthening Behavior of Gravity-cast AM60 Magnesium Alloys (중력주조 AM60 마그네슘 합금의 강화 거동에 미치는 Si 및 Ca 첨가영향)

  • Kim, Jae-Woo;Kim, Do-Hyang;Shin, Kwang-Seon
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.364-372
    • /
    • 1998
  • Effects of Si and Ca additions on the mechanical properties of AM60 based Mg alloys have been investigated. Hardness of the AM60 based Mg alloys reached a maximum value after aging for approximately 33 hours but the amount of hardness increase was negligible. The poor age hardening response of the alloys was due to low Al content, which implies that Al content must be >6 wt.% to observe age hardening effect. The tensile and yield strength increased with increasing Al, Si, and Ca content but elongation decreased with increasing Al and Si content. The best mechanical properties obtained in AM 40-2.5Si-0.2Ca alloy after T4 heat treatment were as follows; tensile strength 193.4 MPa, yield strength 79.2 MPa, and elongation 11.2%. High temperature property obtained from creep test was also improved by introducing $Mg_2Si$ which has high hardness, high melting temperature and low thermal expansion coefficient.

  • PDF

Porcelain Bonding Strength and Mechanical Properties of Sintered Ni-Cr-Ti Alloy for Dental Prosthodontics (치과보철용 Ni-Cr-Ti 소결체합금의 포셀린결합력 및 기계적 특성)

  • Choe, Han-Cheol;Park, Seon-Yeong;Shim, Myung-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.560-566
    • /
    • 2016
  • In this study, porcelain bonding strength and mechanical properties of sintered Ni-Cr-Ti alloy for dental prosthodontics have been researched experimentally. Mechanical and morphological characteristics of the alloys were examined by Vickers hardness test, tensile and bonding strength test, surface roughness test, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. In the sintered Ni-13Cr-xTi alloys, morphology of sintered alloy showed porous matrix diffused with alloying elements of Cr and Ti, and showed dendritic structure after melting process. From the XRD results, the second phases of NiCr, $Ni_3Cr$, and $Ni_3Ti$ were formed in the case of sintered and melted Ni-13Cr-xTi alloys. The tensile strength and hardness of Ni-13Cr-xTi alloys increased, as Ti content increased. Surface roughness increased, as Ti content increased. The bonding strength between metal and porcelain of Ni-13Cr-5Ti alloy was higher than those of Ni-13Cr and Ni-13Cr-10Ti alloys

Consolidation of Incineration Fly Ash by Solvothermal Reaction

  • Masuda, Kaoru;Endoh, Shigehisa
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.655-658
    • /
    • 2001
  • The generation of fly ash tends to increase yearly so that this is currently considered a big environmental concern, which requires appropriate treatment approaches. In this research the consolidation of incineration fly ash by the hot-press solvothermal reaction was investigated to provide an alternative process for the treatment and utilization of this waste material. Results showed that at reaction conditions of 52 K treatment, 20 ㎫ pressure and 60 minutes treatment time, the resulting consolidate exhibited a compressive ness strengths of 37-40 ㎫, a tensile strength of 6.5-7.0 ㎫ and a Rockwell hardness of 20-23 RH15W. These properties are comparable to the compressive ness strength of Portland cement which ranges from 30-40 ㎫ as well as with the tensile strengths of mortar, ganite, artificial lightweight aggregate and solidified high connote whose values are 2-2.5 ㎫, 5-9 ㎫, 5-10 ㎫ and 3-5 ㎫ respectively- Furthermore, by mixing fly ash with glass at 50% ratio and then subjecting to similar treatment conditions, a consolidate with even higher tensile strength of 12.5-13.3 ㎫ and hardness of 77-80 RH15W may be achieved.

  • PDF

The Effects of the Annealing Heat Treatments and Testing Temperatures on the Mechanical Properties of the Invar Materials (인바재료의 기계적 성질에 미치는 풀림 열처리와 시험온도의 영향)

  • Won, Si-Tae;Kim, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.167-176
    • /
    • 2001
  • The effects of heat treatments and testing temperatures on the mechanical properties of Invar materials were investigated through experiments, which call influence the formability in metal forming fields. Annealing temperatures were changed from $900^{\circ}C$ to $1200^{\circ}C$ with an increment of $100^{\circ}C$ under two different furnace atmosphere(vacuum and H$_2$gas). Microstructure and hardness tests were performed for annealed specimens at room temperature(RT) and tensile tests were also performed by changing annealing temperatures as well as testing temperatures from RT to $300^{\circ}C$. The grain size of annealed materials increased with increasing annealing temperature, while micro-hardness distributions showed almost same hardness values regardless of annealing temperatures. Strength ratio (tensile/yield strength), which influences the forming characteristics of sheet metal, remained almost constant for various experimental conditions in case of unannealed specimens. However, it showed increasing tendency with increasing both annealing and testing temperatures, particularly at the testing temperature higher than $200^{\circ}C$. Therefore it can be concluded that press formability of fully-annealed Invar material can be improved by warm forming technique.

  • PDF

A Study on Recycling of EPDM Reclaimed Rubber (폐 EPDM 고무의 재활용을 위한 기초적 연구)

  • Jang, Doo-Hee;Kim, Ji-Hoon;Kim, Young-Ju
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.365-370
    • /
    • 2010
  • In this study, we carried out the evaluation of EPDM(Ethylene Propylene Diene Monomer) reclaimed rubber mixing with natural rubber at various mixing ratio to reuse as rubber filler. The scorch time and moony viscosity was analyzed to evaluate the effect of cure behavior. And also, we analyzed the tensile strength, the elongation at break and cure time to evaluate the variation of cure behavior. As the results, the scorch time and optimal cure time was decreased according to the increasing of EPDM reclaimed rubber. However, the moony viscosity was increased at each mixing ratio. In case of the added EPDM reclaimed rubber was 20 phr(parts by weight per 100 parts by weight of rubber), the hardness and specific gravity was increased a little. The hardness and specific gravity was increased in rapidly under 40 phr of the added EPEM reclaimed rubber. The tensile strength and elongation at break of the compound of natural and EPDM reclaimed rubber was rapidly decreased compared with its natural rubber when the ratio of adding EPDM reclaimed rubber was over 40 phr.

The Effects of Antimony and Tin Addition on the wear resistance properties of ductile cast iron (구상흑연주철의 내마모성에 미치는 Sb 및 Sn 의 영향에 관한 연구)

  • Kwon, Young-Hoon;Kim, Chang-Gyu;Kim, Buk-Suk;Kim, Sung-Han;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.11 no.6
    • /
    • pp.463-474
    • /
    • 1991
  • The effect of $0.01{\sim}0.10%$ Sb and Sn on the wear resistance of ductile cast iron was investigated. The hardness was increased with Sb to 0.10%, but the elongation and the impact value were decreased. The tensile strength was increased with up to 0.05% Sb, however decreased with $0.05{\sim}0.10%$ Sb. The hardness and the tensile strength were increased and the elongation was decreased with up to 0.10% Sn. The nodularity of graphite was decreased with above 0.08% Sb however Sn had no effect on that. When the maximum compressive stress was low ($42kg.f/mm^2$), the weigth loss was decreased with increased hardness and when that was high ($54kg.f/mm^2$ and $65kg.f/mm^2$), the weight loss did not depend upon the hardness. The pearlite stabilization with Sb and Sn increased with the wear resistance of ductile cast iron.

  • PDF

Effect of Austenitizing and Quenching·Tempering Temperatures on Tensile and Impact Properties of AISI 51B20 (AISI 51B20강의 인장 및 충격특성에 미치는 오스테나이트화 온도와 퀜칭·템퍼링 온도의 영향)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.327-337
    • /
    • 2011
  • Effects of microstructural change, tensile properties and impact property according to the change of austenitizing temperature and tempering temperature of AISI 51B20 steel were examined. Regardless of austenite grain size, lath martensite with needle and packet shapes was found at tempering temperature of $300^{\circ}C{\sim}400^{\circ}C$. The needles of lath martensite changed to parallel packet at tempering temperature of $450^{\circ}C{\sim}600^{\circ}C$. As tempering temperature increased, tensile strength, yield strength and hardness decreased, while elongation, ratio of reduction area and Charpy impact energy increased. Grain size increased when quenching temperature was $930^{\circ}C$. Grain size had prominent effect on the mechanical properties of AISI 51B20 steel. Ratio of tensile strength/yield strength and yield strength autenitized at $880^{\circ}C$ followed by tempering at $350^{\circ}C{\sim}450^{\circ}C$ showed higher values than that of autenization at $930^{\circ}C$ due to fine grain size.