• Title/Summary/Keyword: Tensile Shear Test

Search Result 518, Processing Time 0.024 seconds

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

An experimental study of the behaviour of double sided welded plate connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.1-22
    • /
    • 2018
  • Multi-storey precast concrete skeletal structures are assembled from individual prefabricated components which are erected on-site using various types of connections. In the current design of these structures, beam-to-column connections are assumed to be pin jointed. Welded plate beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is at present limited information concerning their detailed structural behaviour under bending and shear loadings. The experimental work has involved the determination of moment-rotation relationships for semi-rigid precast concrete connections in full scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and weld arrangements conformed with successful commercial practice. Proprietary hollow core slabs were tied to the beams by tensile reinforcing bars, which also provide the in-plane continuity across the connections. The strength of the connections in the double sided tests was at least 0.84 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.7 to 3.9 times the flexural stiffness of the attached beam. When the connections were tested without the floor slabs and tie steel, the reduced strength and stiffness were approximately a third and half respectively. This remarkable contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. In general, the double sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided welded plate connection test results are presented in this paper. The behaviour of single sided welded plate connection test results is the subject of another paper.

Development and Evaluation of Polymer-Modified Asphalt Emulsions Used for Tack Coats (택코트용 폴리머 개질 유화아스팔트 개발 및 성능 평가)

  • Kim, Yeong Min;Im, Jeong Hyuk;Hwang, Sung Do
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.39-46
    • /
    • 2015
  • PURPOSES: The objectives of this study were to develop a new polymer-modified emulsion for application to tack coats and to evaluate its properties by comparing it with other types of asphalt emulsions, with the goal of providing an enhanced tack coat material for use in construction. METHODS: Modified asphalt binders were developed from using SBS and SBR latex in the laboratory, and their fundamental properties, such as their penetration index and PG grade, were evaluated. Based on the properties, a new tack coat material was developed. To evaluate the newly developed asphalt emulsion, the bonding strength between the two layers of HMA was measured by applying a uniaxial tensile test and shear test. For the tests, a total of four different conditions were applied to the specimens, including the developed asphalt emulsion, latex modified asphalt emulsion, conventional asphalt emulsion, and non-tack coating. RESULTS AND CONCLUSIONS: Overall, the developed asphalt emulsion exhibits the best bonding strength behavior among all of the three types. Also, the two types of polymer-modified emulsions were found to be better for application for use as a tack coat than a conventional emulsion. Especially, at a high temperature ($50^{\circ}C$), the conventional asphalt emulsion no longer acts as a tack coating material. Therefore, the polymer-modified emulsion should be considered for application to tack coat construction during the summer.

A Development of the Lightweight Wearable Robot with Carbon Fiber Composite (탄소섬유 복합재를 이용한 경량 착용형 로봇의 개발)

  • Lee, Jeayoul;Jeon, Kwangwoo;Choi, Jeayeon;Chung, Goobong;Suh, Jinho;Choi, Ilseob;Shin, Kwangbok
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.81-88
    • /
    • 2015
  • In this paper, we evaluate structural integrity of the wearable robot by using finite element analysis, which is made of CFRP(Carbon Fiber Reinforced Plastic) composite materials to be lightened. On the basis of the ASTM(American Standard Test Method), mechanical tests of the material are carried out in tensile, compressive and shear test for analytical evaluation. With the tested composite material, the main frame and two femoral frames of the robot is redesigned to satisfy the lightening design requirements. It is verified with the structural analysis that the redesigned frames are good for the part of the wearable robot.

Half-dome Thermo-forming Tests of Thermoplastic Glass Fiber/PP Composites and FEM Simulations Based on Non-orthogonal Constitutive Models (열가소성 유리섬유/PP 복합재의 반구돔 열성형 평가 및 비직교 구성방정식을 이용한 FEM 수치해석)

  • Lee, Wonoh
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.236-242
    • /
    • 2016
  • In this work, tensile and in-plane shear tests for thermoplastic glass fiber/polypropylene composites were performed at a thermo-forming temperature and their properties were characterized and mathematically expressed by using the non-orthogonal constitutive model. As for the thermo-forming test, half-dome experiments were carried out by varying the usage of a releasing agent and the weight of holders. As results, the optimum final shape having well-aligned symmetry and no wrinkle formation was obtained when the releasing agent was used, and it was found that the careful control of a holding force is crucial to manufacture the healthy product. Furthermore, FEM simulations based on the non-orthogonal model showed similar final shapes and tendency of wrinkle formation with experimental results, and confirmed that wrinkles increase with less holding force and higher punch force is required under high frictional condition.

Effects of Geosynthetic Reinforcement on Compaction of High Water Content Clay (토목섬유 보강이 고함수비 점성토의 다짐에 미치는 영향)

  • Roh Han Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.67-84
    • /
    • 2005
  • This research was conducted to evaluate the effectiveness of reinforcement for nearly saturated soft clay compaction. The effectiveness was investigated by roller compaction test using nearly saturated clay specimens. The nearly saturated condition was obtained by submerging clay in the water for 12 hours. High water content specimens were compacted in plane strain condition by a steel roller. A specimen was compacted by four 5 cm horizontal layers. Specimens were prepared fur both reinforced and unreinforced cases to evaluate the effectiveness of reinforcement. Used reinforcement is a composite consisted of both woven and non-woven geotextile. The composite usually provides drainage and tensile reinforcement to hi인 water-contented clay so that it increases bearing capacity. Therefore, large compaction load can be applied to reinforced clay and it achieves higher density effectively. The reinforcement also increases compaction efficiency because it reduces the ratio between shear and vertical forces during compaction process. The maximum vertical stress on the base of specimen usually decreased with higher compaction thickness. The reinforcement increases soil stiffness under the compaction roller and it initiates stress concentration. As a result, it maintains higher vertical stress level on the base of specimen that provides better compaction characteristics. Based on test results, it can be concluded that the reinforcement is essential to achieve effective compaction on soft clay.

A Study on the Structural Behavior of the Composite Slabs Using the New Shaped Deck Plate (신형상의 데크플레이트를 이용한 합성슬래브의 구조적 거동에 관한 연구)

  • Kim, Chang Woo;Choi, Sung Mo;Kang, Do An;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.589-600
    • /
    • 1997
  • Cold-formed deck sections are used in many composite floor slab applications wherein the steel deck serves not only as the form for the concrete during construction but also as the principal tensile reinforcement for the bottom fiber of the composite slab. This paper provides the results of an experimental study performed for the composite slabs with the new shaped deck plates with the locking ribs, the dove tails, and the powerful embossment, which are the mechanical means to improve positive interlocking effect between the deck and the concrete. A total of 28 specimens are tested to investigate the composite effects between the concrete and metal deck plate. Important parameters in this are the span length, the thickness of the deck plate, support condition, and whether shear studs are placed at each support or not. The test results are summarized for the maximum load and failure behavior for the specimens.

  • PDF

Plasma Treatment of Carbon Nanotubes and Interfacial Evaluation of CNT-Phenolic Composites by Acoustic Emission and Dual Matrix Techniques (음향 방출과 이중 기지 기술을 이용한 탄소나노튜브의 플라즈마 처리 효과에 따른 탄소나노튜브-페놀 복합재료의 계면특성 평가)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Lee, Woo-Il;Park, Jong-Kyoo;Park, Joung-Man
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.76-81
    • /
    • 2012
  • Atmospheric pressure plasma treatment on carbon nanotube (CNT) surfaces was performed to modify reinforcement effect and interfacial adhesion of carbon fiber reinforced CNT-phenolic composites. The surface changes occurring on CNT treated with plasma were analyzed by using Fourier transform infrared spectroscope (FT-IR). The significant improvement of wettability on CNT was confirmed by static contact angle test after plasma treatment. Such plasma treatment resulted in a decrease in the advancing contact angle from $118^{\circ}$ to $60^{\circ}$. The interfacial adhesion between carbon fiber and CNT-phenolic composites increased by plasma treatment based on apparent modulus test results during quasi-static tensile strength. Furthermore, the proposed database offers valuable knowledge for evaluating interfacial shear strength (IFSS).

Bond Strength of Carbon Fiber Sheet on Concrete Substrate Processed by Vacuum Assisted Resin Transfer Molding

  • Uddin, N.;Shohel, M.;Vaidya, U.K.;Serrano-Perez, J.C.
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.277-299
    • /
    • 2008
  • High quality and expedient processing repair methods are necessary to enhance the service life of bridge structures. Deterioration of concrete can occur as a result of structural cracks, corrosion of reinforcement, and freeze.thaw cycles. Cost effective methods with potential for field implementation are necessary to address the issue of the vulnerability of bridge structures and how to repair them. Most infrastructure related applications of fiber-reinforced plastics (FRPs) use traditional hand lay-up technology. The hand lay-up is tedious, labor-intensive and relies upon personnel skill level. An alternative to traditional hand lay-up of FRP for infrastructure applications is Vacuum Assisted Resin Transfer Molding (VARTM). VARTM uses single sided molding technology to infuse resin over fabrics wrapping large structures, such as bridge girders and columns. There is no work currently available in understanding the interface developed, when VARTM processing is adopted to wrap fibers such as carbon and/or glass over concrete structures. This paper investigates the interface formed by carbon fiber processed on to a concrete surface using the VARTM technique. Various surface treatments, including sandblasting, were performed to study the pull-off tensile test to find a potential prepared surface. A single-lap shear test was used to study the bond strength of CFRP fabric/epoxy composite adhered to concrete. Carbon fiber wraps incorporating Sikadur HEX 103C and low viscosity epoxy resin Sikadur 300 were considered in VARTM processing of concrete specimens.

A study on the variation of in-plane and out-of-plane properties of T800 carbon/epoxy composites according to the forming pressure (성형 압력에 따른 T800 탄소섬유/에폭시 복합재료의 평면 내.외 물성 변화에 대한 연구)

  • Park, Myong-Gil;Cho, Sung-Kyum;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.61-66
    • /
    • 2010
  • In this paper, the variation of mechanical properties of T800 carbon/epoxy composites according to the forming pressure, which was referred to previous studies on a filament winding process, were investigated. The specimens of all the tests were fabricated by an autoclave de-gassing molding process controlling forming pressure (absolute pressures of 0.1MPa, 0.3MPa, 0.7MPa including vacuum) and water jet cutting after fabricating composite laminates. Various tensile tests were performed for in-plane properties and interlaminar properties were also measured by using Iosipescu test jig. Fiber volume fraction was measured to correlate the property variation and the forming pressure. This properties are expected to be utilized in the design of Type III pressure vessel for hydrogen vehicles which uses the same carbon fiber (T800 carbon fiber) for the filament winding process.