• Title/Summary/Keyword: Tenocyte

Search Result 5, Processing Time 0.027 seconds

Ginsenoside Rg1 enhances the healing of injured tendon in achilles tendinitis through the activation of IGF1R signaling mediated by oestrogen receptor

  • Wu, Tianyi;Qi, Wenxiao;Shan, Haojie;Tu, Bin;Jiang, Shilin;Lu, Ye;Wang, Feng
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.526-535
    • /
    • 2022
  • Background: During the pathogenesis of tendinopathy, the chronic inflammation caused by the injury and apoptosis leads to the generation of scars. Ginsenoside Rg1 (Rg1) is extracted from ginseng and has anti-inflammatory effects. Rg1 is a unique phytoestrogen that can activate the estrogen response element. This research aimed to explore whether Rg1 can function in the process of tendon repair through the estrogen receptor. Methods: In this research, the effects of Rg1 were evaluated in tenocytes and in a rat model of Achilles tendinitis (AT). Protein levels were shown by western blotting. qRT-PCR was employed for evaluating mRNA levels. Cell proliferation was evaluated through EdU assay and cell migration was evaluated by transwell assay and scratch test assay. Results: Rg1 up-regulated the expression of matrix-related factors and function of tendon in AT rat model. Rg1 reduced early inflammatory response and apoptosis in the tendon tissue of AT rat model. Rg1 promoted tenocyte migration and proliferation. The effects of Rg1 on tenocytes were inhibited by ICI182780. Rg1 activates the insulin-like growth factor-I receptor (IGF1R) and MAPK signaling pathway. Conclusion: Rg1 promotes injured tendon healing in AT rat model through IGF1R and MAPK signaling pathway activation.

Current Trends for Treating Lateral Epicondylitis

  • Kim, Gyeong Min;Yoo, Seung Jin;Choi, Sungwook;Park, Yong-Geun
    • Clinics in Shoulder and Elbow
    • /
    • v.22 no.4
    • /
    • pp.227-234
    • /
    • 2019
  • Lateral epicondylitis, also known as 'tennis elbow', is a degenerative rather than inflammatory tendinopathy, causing chronic recalcitrant pain in elbow joints. Although most patients with lateral epicondylitis resolve spontaneously or with standard conservative management, few refractory lateral epicondylitis are candidates for alternative non-operative and operative modalities. Other than standard conservative treatments including rest, analgesics, non-steroidal anti-inflammatory medications, orthosis and physical therapies, nonoperative treatments encompass interventional therapies include different types of injections, such as corticosteroid, lidocaine, autologous blood, platelet-rich plasma, and botulinum toxin, which are available for both short-term and long-term outcomes in pain resolution and functional improvement. In addition, newly emerging biologic enhancement products such as bone marrow aspirate concentrate and autologous tenocyte injectates are also under clinical use and investigations. Despite all non-operative therapeutic trials, persistent debilitating pain in patients with lateral epicondylitis for more than 6 months are candidates for surgical treatment, which include open, percutaneous, and arthroscopic approaches. This review addresses the current updates on emerging non-operative injection therapies as well as arthroscopic intervention in lateral epicondylitis.

Extensor Pollicis Longus Tendon Rupture Following Local Steroid Injection (국소 스테로이드 주사 후에 발생한 장무지신건 파열)

  • Choi, Yun Seok;Kim, Tae Hyung;Lim, Jin Soo;Jun, Young Joon
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.120-123
    • /
    • 2006
  • Spontaneous extensor pollicis longus tendon rupture is commonly caused by attrition of the tendon from trauma or inflammatory processes. We experienced a patient with extensor pollicis longus tendon rupture after steroid injection, in which the rupture may have been caused by the effects of steroid itself as well as direct damage from the needle. A 51-year-old woman complained of inability to extend her right thumb at the first metacarpophalangal & interphalangeal joint level. The patient had a history of local steroid injection into the dorsal & radial side of wrist on two occations, and had no history of trauma or rheumatologic disease. After a physical examination of the patient, we decided to explore the wrist. The patient agreed with operation. Intraoperatively, an incision was made into the wrist and the proximal and distal ends of the ruptured extensor pollicis longus tendon were identified. The defect between the proximal and the distal end was measured to approach 8cm, and a palmaris longus tendon graft was performed. After three months of rehabilitation, the first metacarpophalangal & interphalangeal joint recovered the normal range of motion. Steroid injection has been widely used in various musculoskeletal disorders such as rheumatoid arthritis and osteoarthritis. However, inadvertent steroid injection into the extra or intra articular spaces may lead to tendon rupture. Steroids reduce tensile strength by decreasing tenocyte activity and collagen synthesis. Also, the physical effect of direct needle-stick injury into the mesotenon and blood vessels around the tendon may cause damage. In addition, hematoma and edema may increase pressure around the tendon and compromise blood supply, leading to tendon degeneration and subsequent rupture. When injecting steroid into an articular area, all physicians should have a complete understanding of the surrounding anatomy and always keep in mind the hazards of such procedures.

Comparative Analysis of Platelet-rich Plasma Effect on Tenocytes from Normal Human Rotator Cuff Tendon and Human Rotator Cuff Tendon with Degenerative Tears

  • Yoon, Jeong Yong;Lee, Seung Yeon;Shin, Sue;Yoon, Kang Sup;Jo, Chris Hyunchul
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.1
    • /
    • pp.3-14
    • /
    • 2018
  • Background: Platelet-rich plasma (PRP) stimulates cell proliferation and enhances matrix gene expression and synthesis. However, there have been no comparative study of the PRP effect on the normal and degenerative tenocytes. The purpose of this study was to compare the effect of PRP on tenocytes from normal and degenerative tendon. Methods: Tendon tissues were obtained from patients undergoing arthroscopic repair (n=9) and from healthy donors (n=3). Tenocytes were cultured with 10% (vol/vol) platelet-poor plasma, PRP activated with calcium, and PRP activated with calcium and thrombin. The total cell number was assessed at days 7 and 14. The expressions of type I and III collagen, decorin, tenascin-C, and scleraxis were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction. The total collagen and glycosaminoglycan (GAG) synthesis was evaluated at days 7 and 14. Results: No differences were observed between the groups at day 7, but cell proliferation was remarkably increased in tenocytes from the degenerative tendon at day 14. In both tenocyte groups, the gene expressions of type I and III collagen were up-regulated. GAG synthesis was greater in the normal tendon, whereas the expressions of decorin and tenascin-C were increased in tenocytes from the degenerative tendon. Tenocytes from the degenerative tendon had higher fold-change of GAG synthesis and a lower collagen III/I ratio than normal tenocytes. Conclusions: PRP promoted the cell proliferation and enhanced the synthesis of tendon matrix in both groups. PRP has a greater positive effect on cell proliferation, matrix gene expression and synthesis in tenocytes from degenerative tendon.

Effects of Gemifloxacin on Achilles Tendon in Immature Rats (Gemifloxacin이 미성숙 랫드의 아킬레스건에 미치는 영향)

  • Bae, Jin-Gye;Kim, Young-Soo;Kim, Se-Eun;Shim, Kyung-Mi;Kang, Seong-Soo;Cho, Ik-Hyun;Lee, Soo-Han;Park, Chang-Hyun;Uhm, Chang-Sub;Jeong, Moon-Jin;Han, Song-Iy;Lim, Sung-Chul;Bae, Chun-Sik
    • Applied Microscopy
    • /
    • v.36 no.2
    • /
    • pp.93-99
    • /
    • 2006
  • Gemifloxacin is a synthetic fluoroquinolone antimicrobial agent that exhibits potent activity against most Gram-negative and Gram-positive organisms, and has a comparatively low chondrotoxic potential in immature animals. This study examined the effects of gemifloxacin on the Achilles tendons in immature Sprague-Dawley rats treated by oral intubation once daily for 5 consecutive days from postnatal week 4 onward at doses of 0 (vehicle), and 600mg/kg body weight Ofloxacin was used for comparison. The Achilles tendon sperimens were examined by electron microscopy. In comparison with the vehicle-treated controls, there were ultrastructural changes in all samples from the gemifloxacin- and ofloxacin-treated rats. Degenerative changes were observed in the tenocytes, and the cells that detached from the extracellular matrix were recognizable. The degree of degenerative changes and the number of degenerated cells in the Achilles tendon were significantly higher in the treated group than in the control group. Moreover, among the quinolone treated groups, these findings were more significant in the ofloxacin treated group, and less significant in the gemifloxacin treated group. It is unclear what these findings mean with respect to the possible risk ill juvenile patients treated with gemifloxacin or other quinolones. However, these results show that gemifloxacin causes fewer changes in the connective tissue structures.