• Title/Summary/Keyword: Tendon actuation

Search Result 5, Processing Time 0.017 seconds

Effect of Vibration on Twisted String Actuation Inside Conduit at High Curvature Angles (높은 곡률 각을 가지는 도관 내부의 줄 꼬임 구동에 대한 진동 효과)

  • Lee, Donghyee;Gaponov, Igor;Ryu, Jee-Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.221-227
    • /
    • 2019
  • This paper studies an effect of vibration on twisted string actuation inside conduit at high curvature angles. In our previous work. we have mentioned that twisted string actuators can be used to transmit power even at significant curvature angles of the conduit. However, several undesirable effects, namely pull-back, hysteresis, and chattering, were present during actuation due to friction between strings and the internal sheath of the conduit. This paper reports the results of experimental study on effects of vibration on twisted string actuation inside curved conduits. We have demonstrated that applying vibration generated near natural frequency of the system during the stages of twisting and untwisting cycles helped reduce pull-back and hysteresis and increase string contraction. In case when sheath was deflected by $180^{\circ}$ under a constant load of 3 kg, we were able to achieve over 40% decrease in pull-back and 30% decrease in hysteresis, compared with no vibration case.

Twisted String-based Upper Limb Exoskeleton (줄꼬임에 기반한 상지 외골격 로봇)

  • Lee, Seung-Jun;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.960-966
    • /
    • 2016
  • This paper proposes a new concept of a soft and wearable upper-limb exoskeleton. A novel actuation principle, called the twisted string actuation principle, is implemented to make it lightweight, soft, and therefore easily wearable. Its power transmission mechanism and harness are designed to be soft and wearable, yet have enough control accuracy for rehabilitation. In addition to force transmission optimization, a speed enlargement mechanism is newly introduced in order to increase the contraction speed of the twisted string actuation mechanism by sacrificing the unnecessarily large gear reduction ratio of the twisted string mechanism. A prototype has been tested for mirroring therapy, and the feasibility of the proposed mechanism has been shown through a sufficiently accurate tracking performance.

Development of Soft Wearable Robot for Assisting Supination and Pronation of Forearm (전완의 회외 및 회내를 보조하는 유연한 착용형 로봇 개발)

  • Kyu Bum Kim;Jihun Park;Kyu-Jin Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.359-366
    • /
    • 2023
  • In order to fully utilize the functions of the hand which is the end effector of the upper limb, other parts of the upper limb have to perform their own roles. Among them, the pronation and supination of the forearm, which allows the hand to rotate along the longitudinal direction of the forearm, play an important role in activities of daily living. In this paper, a soft wearable robot that assists the pronation and supination of the forearm for individuals with weakened or lost upper limb function is proposed. The wearable robot consists of an anchoring part with polymer (wrist strap, elbow strap), a tendon with a belt and wire, and an actuation module. It was developed based on the requirements with respect to friction of anchoring part, forearm compression, and friction of the tendon. It was confirmed that these requirements were satisfied through literature review and experiments. Since all components exist within the forearm when worn, it is expected to be easy to combine with the already developed soft wearable robots for the hand, wrist, elbow, and shoulder.

Development of a Redundant Shoulder Complex Actuated by Metal Wire Tendons (텐던 구동 기반 여유자유도를 가지는 로봇의 어깨 메커니즘 구현)

  • Choi, Taeyong;Kim, Doohyung;Do, Hyunmin;Park, Chanhun;Park, Dongil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.853-858
    • /
    • 2016
  • Cooperation and collaboration with robots are key functions of robotic utility that are currently developing. Thus, robots should be safe and resemble human beings to cope with these needs. In particular, dual-arm robots that mimic human kinetics are becoming the focus of recent industrial robotics research. Their size is similar to the size of a human adult; however, they lack natural, human-like motion. One of the critical reasons for this is the shoulder complex. Most recent dual-arm robots have only 2 degrees of freedoms (DOFs), which significantly limits the workspace and mobility of the shoulders and arms. Therefore, a redundant shoulder complex could be very important in new developments that enable new capabilities. However, constructing a kinematically redundant shoulder complex is difficult because of spatial constraints. Therefore, we propose a novel, redundant shoulder complex for a human-like robot that is driven by flexible wire tendons. This kinematically redundant shoulder complex allows human-like robots to move more naturally because of redundant DOFs. To control the proposed shoulder complex, a hybrid control scheme is used. The positioning precision has also been considered, and the ability of the shoulder complex to perform several human-like motions has been verified.