• Title/Summary/Keyword: Temporary struts

Search Result 13, Processing Time 0.018 seconds

In-vitro Evaluation of a Bileaflet Polymer Valve and Preliminary Animal Tests (이엽식 고분자판막의 수력학적 특성평가 및 동물실험)

  • 김철생;박복춘;서수원;한동근;이규백;최진욱;김인영;김희찬;김영하
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.225-234
    • /
    • 1992
  • In order to use a low cost polymer valve in our total artificial heart and ventricular assist device, we have developed a slit-type bileaflet polymer valve[BPV 1. The aim of this study is to determine the hydrodynamic effectiveness of the newly-designed BPV and its feasibility for temporary use in the blood pumps. For hydrodynamic comparison, we investigated in-vitro the pressure drop across the valve, the leakage volume, the flow rate and the flow pattern of the BPV, two mechanical valves and a trileaflet polymer valve. We employed the ventriculo-pulmonary bypassing method for in-vivo tests of the BPV's together vilh our electrohydraulic left venIn ricular assist device in mongrel dogs. The BPV showed adquate gydrodynamic performances and in the preliminary animal bests, there was no xvi dence of thrombus formation on the valve leaflets and around the struts. Detailed results obtained from the animal tests will be separately reported. This report involves the design criteria, fabrication and hydrodynamic charateristics of she BPV, and the basic merits and demerits of the valve are dis- cussed from the hydrodynamic point of view.

  • PDF

A Study on the Behaviour Analysis and Construction Method of the Self-Supported Earth Retaining Wall (SSR) Using Landslide Stabilizing Piles (2열 H-파일을 이용한 자립식 흙막이 공법(SSR)의 거동분석 및 시공방법에 관한 연구)

  • Sim, Jae-Uk;Park, Keun-Bo;Son, Sung-Gon;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.41-54
    • /
    • 2009
  • The purpose of this research is to introduce the new temporary earth retaining wall system using landslide stabilizing piles. This system is a self-supported retaining wall (SSR) without installing supports such as tiebacks, struts and rakers. The SSR is a kind of gravity structures consisting of twin parallel lines of piles driven below excavation level, tied together at head of soldier piles and landslide stabilizing piles by beams. In order to investigate applicability and safety of this system, a series of experimental model tests were carried out and the obtained results are presented and discussed. Furthermore, the measured data from seven different sites on which the SSR was used for excavation were collected and analyzed to investigate the characteristic behavior lateral wall movements associated with urban excavations in Korea. It is observed that lateral wall movements obtained from the experimental model is in good agreement with the general trend observed by in site measurements.

Investigation of Seismic Response for Deep Temporary Excavation Retaining Wall Using Dynamic Centrifuge Test (동적원심모형실험을 통한 대심도 가설 흙막이 벽체 지진 시 거동 연구)

  • Yun, Jong Seok;Han, Jin-Tae;Kim, Jong-Kwan;Kim, Dongchan;Kim, Dookie;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.119-135
    • /
    • 2022
  • This paper used dynamic centrifuge tests to examine the seismic response for a deep temporary retaining wall with four input motions of 100, 1,000, and 2,400 years of return periods. The centrifuge model was designed based on an actual deep excavation design with a 50 m maximum excavation depth. The model backfill was prepared with dry silica sand at a relative density of 55%, and the retaining wall was modeled as a 24.8 m height diaphragm wall supported by struts. Acceleration response was amplified at the backfill surface, top of the wall, and near bedrock. However, in the middle of the model, input motion was de-amplified. The member forces of the wall and strut induced by the seismic load, which excited, were compared with the member force at rest condition. The wall's maximum negative and positive moments were increased to 36% and 10% compared to the maximum moment at rest. The maximum axial force increases to 70% of the at rest axial force on the bottom strut. The equivalent static analysis using Mononobe-Okabe (M-O) and Seed-Whitman (S-W) seismic earth pressures were compared to the centrifuge results. Considering the bending moment, the analysis results with the M-O theory underestimates but that with the S-W theory overestimates.