• Title/Summary/Keyword: Temporary steel structure

Search Result 36, Processing Time 0.027 seconds

Buckling Design of Temporary Bridges Subjected to Both Bending and Compression (압축과 휨을 동시에 받는 가교량 주요부재의 좌굴설계)

  • So Byoung-Hoon;Kyung Yong-Soo;Bang Jin-Hwan;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.977-984
    • /
    • 2006
  • Generally main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges is presented using 3D system buckling analysis and second-order elastic analysis. 2 types of temporary bridges, which are possible to be designed and fabricated in reality, are chosen and the buckling design for them is performed considering load combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, effects of live loads on effective length of main members, transition of ~id buckling modes, and effects of second-order analysis are investigated through case study of 2 temporary bridges.

  • PDF

A Study on the Bearing Capacity of Steel Composite Concrete Lining Board (강합성 콘크리트 복공판의 내력시험에 관한 연구)

  • Paik, Shinwon;Kim, Yongon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.122-126
    • /
    • 2012
  • Steel lining board usually is used as a floor on the temporary steel bridges. It also is installed in the subway construction site. However, in particular in subway construction, renovations and site of old bridges, these steel lining board structures have a problem such as noise, accidents and slip hazards. So steel composite lining board is being developed to solve this problem. Steel composite lining board consists of compressive concrete showing excellent performance in slip, durability, resistance and noise, lower tensile and shear steel showing high safety, effective and superior workability in many respects. Steel composite lining board structure gradually is used in many construction sites, because it has a high quality such as durability, little noise and slip. In this study, flexural tests of steel composite lining board in accordance with welding patterns were conducted to compare the performance of the structure.

Case Study for Buckling Design of Temporary Bridges using System Buckling Analysis (시스템좌굴 해석법을 이용한 라멘형가교 주요부재의 좌굴설계에 관한 사례 연구)

  • Kyung, Yong Soo;So, Byoung Hoon;Bang, Jin Hwan;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2007
  • Generally, main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges was presented using a 3D system buckling analysis and second-order elastic analysis. Six types of temporary bridges, which can be designed and fabricated in reality, were chosen and the buckling design for them was performed in consideration ofload combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, transition of 3D buckling modes, and effects of second-order analysis were investigated through a case study involving six temporary bridges.

Analytical testing and evaluation of truss typed structures for tunnel maintenance

  • Lee, Dongkyu;Kim, Dohwan;Lee, Jaehong;Noh, Pilsung;Park, Sungsoo
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.949-961
    • /
    • 2015
  • The goal of this study is to present numerical modeling and analytical testing in order to evaluate an innovative space truss typed temporary structure, which is used to maintenance and repair of road tunnels. The present space truss structure has merits to use UL-700 high strength steel tube as members and to carry out maintenance and repair works of road tunnels without blocking cars and transportations. Numerical modeling and analytical testing of the space truss are investigated by using commercial engineering software, i.e., ABAQUS 6.5-1, and then it is verified that the truss structure has both structural safety and effective function for maintenances and repairs of road tunnels.

An Analysis of Flexural Performance of Concrete Filled Soldier Pile Applied to Temporary Retaining Wall (흙막이 벽체에 적용하는 콘크리트 충전형 엄지말뚝의 휨성능 분석)

  • Park, Yong-Hyeon;Kim, Do-Bumn;Ju, Young-Kyu;Yang, Il-Seung;Yom, Kyong-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.3
    • /
    • pp.19-25
    • /
    • 2019
  • The purpose of this study was to evaluate bending performance of concrete filled soldier pile for temporary retaining wall. Structural performance tests were conducted on total number of four specimens. Each specimen had a unique characteristics with combination of the following variables, existence of reinforcing bar and locations of reinforcing steel plates. The results of this study were as follows; concrete filled steel tubes with being reinforced bar and flange rather than non-bar showed better performance. Higher yield, tensile strength and sufficient plastic strain were archived and maximum moment observed in experiments exceeded theoretical maximum moment in both allowable stress design and limit state design at all specimens.

A Study on the Buckling Characteristics of Steel Pipe Scaffold (강관비계의 좌굴특성에 관한 연구)

  • Paik, Shin-Won;Song, In-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.57-61
    • /
    • 2010
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Scaffoling is a temporary frame used to support people and material in the construction or repair of buildings and other large structures. It is usually a modular system of metal pipes, although it can be made out of other materials. Bamboo is still used in some Asian countries like China. The purpose of a working scaffold is to provide a safe place of work with safe access suitable for the work being done. In construction site, steel pipes are usually used as scaffolds. In this study, scaffolding systems which is changed according to sleeper and joist space were measured by buckling test. Buckling load of respective scaffolding system was analyzed by structural analysis program(MIDAS). Buckling load of scaffold with/without wall connection and footboard was got by test and structural analysis. According to these results,we know that scaffolding system of case 3 is suitable. Buckling load of scaffold with wall connection is higher than without wall connection. So wall connection is important in scaffoling systems. Footboard in the scaffolding systems is not effective against promotion of buckling load. Finally, the present study results will be used to design scaffolding systems safely in the construction sites.

Development of a System of Temporary Arch Bridges by Using Snap-fit GFRP Composite Decks (조립식 복합소재 아치구조를 이용한 가교 시스템 개발)

  • Cho, Yong-Sang;Lee, Sung-Woo;Hong, Kee-Jeung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.276-281
    • /
    • 2008
  • Glass-fiber reinforced polyester(GFRP) composite material is a promising alternative to existing construction materials such as steel, concrete and wood. One of passible applications of GFRP composite material is to build temporary bridges by assembling GFRP composite decks. In this paper, we develop a system of temporary arch bridges that can be built by easy assembling of GFRP composite decks. For this purpose, several types of temporary arch bridges are suggested and verified by FE analysis.

  • PDF

A Case study of steel sheet pile (강널말뚝을 이용한 국내.외 시공 사례)

  • 여병철;김광일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.111-118
    • /
    • 1994
  • The use of steel sheet pile walls as barrier walls have the temporary for coffer dam, retaining wall in excavation, etc., but also permanent of semi-permanent for harbor construction, containment systems, vertical barrier systems for waste disposal (landfill) or subway in excavarion. In all these applicaions the resistance of the structure to seepage plays an important role. Also the stability and longevity of the construction, the possibility of permanent control and survey make the steel sheet pile wall a nearly perfect vertical barrier from a technical and economical point of view.

  • PDF

Analysis of Permeability Characteristic for Z type Steel Sheet Pile by Field Test (현장시험 시공을 통한 Z형 강널말뚝의 현장차수특성 분석)

  • 이용수;정하익;홍승서;이광범;김상진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.325-330
    • /
    • 2000
  • In general steel sheet pile use the containment system, vertical barrier systems for waste disposal and landfill purposes, roads in excavation which have a more permanent character or temporary structure. The sheet pile joints between section of the wall are sealed with a filter material arid the resistance to seepage is a function of the type of material employed. The aim of this paper is to review a characteristic of permeability for Z type sheet pile by field test in various condition.

  • PDF

Temporary Arch Bridges Assembled by Snap-fit GFRP Decks and Bolts (첨단복합소재 데크를 볼트결합한 조립식 아치가교의 거동분석)

  • Hong, Kee-Jeung;Lee, Sung-Woo;Choi, Sung-Ho;Khum, Moon-Seoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.247-254
    • /
    • 2010
  • Due to lightweight and high durability of glass-fiber reinforced polyester (GFRP) materials, they are promising alternatives to conventional construction materials such as steel, concrete and wood. As good application examples of GFRP materials, several types of temporary arch bridges were suggested and verified by finite element analyses in our previous study where snap-fit GFRP decks were applied. In this paper, we conduct a structural performance test to verify safety and serviceability of the temporary arch bridge, where snap-fit GFRP decks are assembled by bolts. The structural problems occurred in this test are also discussed and improvement of temporary arch bridges is suggested to resolve the occurred structural problems.