• Title/Summary/Keyword: Temporary anchorage device

Search Result 8, Processing Time 0.028 seconds

TAD driven whole dentition distalization with special considerations for incisal/gingival display and occlusal canting (전치부 및 치은의 노출량과 교합평면의 캔팅을 고려한 미니스크류를 이용한 전치열의 원심이동)

  • Paik, Cheol-Ho
    • The Journal of the Korean dental association
    • /
    • v.57 no.6
    • /
    • pp.333-343
    • /
    • 2019
  • Many orthodontists face difficulties in aligning incisors in an esthetically critical position, because the individual perception of beauty fluctuates with time and trend. Temporary anchorage device (TAD) can aid in attaining this critical incisor position, which determines an attractive smile, the amount of incisor display, and lip contour. Borderline cases can be treated without extraction and the capricious minds of patients can be satisfied with regard to the incisor position through whole dentition distalization using TAD. Mild to moderate bimaxillary protrusion cases can be treated with TAD-driven en masse retraction without premolar extraction. Patients with Angle's Class III malocclusion can be the biggest beneficiaries because both sufficient maxillary incisal display, through intrusion of mandibular incisors, and distalization of the mandibular dentition are successfully achieved. In addition, TAD can be used to correct various other malocclusions, such as canting of the occlusal plane and dental/alveolus asymmetry.

  • PDF

Evaluation of mandibular cortical bone thickness for placement of temporary anchorage devices (TADs)

  • Kim, Jung-Hoon;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.42 no.3
    • /
    • pp.110-117
    • /
    • 2012
  • Objective: In this study, we measured the cortical bone thickness in the mandibular buccal and lingual areas using computed tomography in order to evaluate the suitability of these areas for application of temporary anchorage devices (TADs) and to suggest a clinical guide for TADs. Methods: The buccal and lingual cortical bone thickness was measured in 15 men and 15 women. Bone thickness was measured 4 mm apical to the interdental cementoenamel junction between the mandibular canine and the 2nd molar using the transaxial slices in computed tomography images. Results: The cortical bone in the mandibular buccal and lingual areas was thicker in men than in women. In men, the mandibular lingual cortical bone was thicker than the buccal cortical bone, except between the 1st and 2nd molars on both sides. In women, the mandibular lingual cortical bone was thicker in all regions when compared to the buccal cortical bone. The mandibular buccal cortical bone thickness increased from the canine to the molars. The mandibular lingual cortical bone was thickest between the 1st and 2nd premolars, followed by the areas between the canine and 1st premolar, between the 2nd premolar and 1st molar, and between the 1st molar and 2nd molar. Conclusions: There is sufficient cortical bone for TAD applications in the mandibular buccal and lingual areas. This provides the basis and guidelines for the clinical use of TADs in the mandibular buccal and lingual areas.

Histological analysis on tissues around orthodontically intruded maxillary molars using temporary anchorage devices: A case report

  • Hui-Chen Tsai;Julia Yu-Fong Chang;Chia-Chun Tu;Chung-Chen Jane Yao
    • The korean journal of orthodontics
    • /
    • v.53 no.2
    • /
    • pp.125-136
    • /
    • 2023
  • Before progress was recently made in the application of temporary anchorage devices (TADs) in bio-mechanical design, orthodontists were rarely able to intrude molars to reduce upper posterior dental height (UPDH). However, TADs are now widely used to intrude molars to flatten the occlusal plane or induce counterclockwise rotation of the mandible. Previous studies involving clinical or animal histological evaluation on changes in periodontal conditions after molar intrusion have been reported, however, studies involving human histology are scarce. This case was a Class I malocclusion with a high mandibular plane angle. Upper molar intrusion with TADs was performed to reduce UPDH, which led to counterclockwise rotation of the mandible. After 5 months of upper molar intrusion, shortened clinical crowns were noticed, which caused difficulties in oral hygiene and hindered orthodontic tooth movement. The mid-treatment cone-beam computed tomography revealed redundant bone physically interfering with buccal attachment and osseous resective surgeries were followed. During the surgeries, bilateral mini screws were removed and bulging alveolar bone and gingiva were harvested for biopsy. Histological examination revealed bacterial colonies at the bottom of the sulcus. Infiltration of chronic inflammatory cells underneath the non-keratinized sulcular epithelium was noted, with abundant capillaries being filled with red blood cells. Proximal alveolar bone facing the bottom of the gingival sulcus exhibited active bone remodeling and woven bone formation with plump osteocytes in the lacunae. On the other hand, buccal alveolar bone exhibited lamination, indicating slow bone turnover in the lateral region.

Histologic assessment of the biological effects after speedy surgical orthodontics in a beagle animal model: a preliminary study (비글견에서 급속수술교정 치료 후 생물학적 효과에 대한 조직평가: 예비연구)

  • Kim, Hong-Suk;Lee, Young-Jun;Park, Young-Guk;Chung, Kyu-Rhim;Kang, Yoon-Goo;Choo, Hye-Ran;Kim, Seong-Hun
    • The korean journal of orthodontics
    • /
    • v.41 no.5
    • /
    • pp.361-370
    • /
    • 2011
  • Objective: Speedy surgical orthodontics (SSO), an innovative orthodontic treatment, involves the application of orthopedic forces against temporary skeletal anchorage devices following perisegmental corticotomy to induce movement of specific dental segments. Herein, we report the biological effects of SSO on the teeth and periodontal structures. Methods: Five beagle dogs were divided into 2 groups and their 6 maxillary incisors were retracted $en$ $masse$ by applying 500 g orthopedic force against a single palatal mini-plate. Retraction was performed without and with perisegmental corticotomy in groups I and II, respectively. All animals were killed on the 70th day, and their periodontal structures were processed for histologic analyses and scanning electronic microscopy (SEM). The linear distance between the third maxillary incisor and canine was used as a benchmark to quantify the retraction amount. Results: Retraction was markedly faster and retraction amount greater in group II than in Group I. Surprisingly, Group II did not show any root resorption despite extensive retraction, while Group I showed prominent root surface irregularities. Similarly, SEM showed multiple resorption lacunae in Group I, but not in Group II. Conclusions: SSO is an effective and favorable orthodontic approach for major en masse retraction of the maxillary anterior teeth.

A cone-beam computed tomography study on strategic uprighting of mandibular molars using a biocreative reverse curve system

  • Kim, Jae-Woo;Choi, Jin-Young;Kim, Min-Ji;Bin, Xu;Kim, Seong-Hun
    • The korean journal of orthodontics
    • /
    • v.52 no.5
    • /
    • pp.354-361
    • /
    • 2022
  • Objective: To analyze the overall treatment effects in terms of the amount of uprighting with changes in the three-dimensional positions of the mandibular posterior teeth after applying the biocreative reverse curve (BRC) system. Methods: Thirty-four patients (mean age, 20.5 ± 8.56 years) were treated using the BRC system (mean period, 8.17 ± 2.19 months). Cone-beam computed tomography was performed before treatment and after treatment with the BRC system. The three-dimensional movement of each tooth was analyzed in the coordinate system at points on the crown and root apex. A paired t-test was used to analyze the treatment effects of the BRC system. Results: The application of the BRC system spanning from the first premolar to the second molar resulted not only in buccal and distal uprighting, but also in increased buccal and distal tipping of the teeth. The premolars and the first molar were extruded, and the second molar was intruded. Conclusions: When the BRC system is applied, simultaneous distal and buccal uprighting of the premolars and molars can be achieved bilaterally using a temporary skeletal anchorage device without unnecessary movement of the anterior teeth.

A new rationale for preservation of the mandibular third molar in orthognathic patients with missing molars

  • Baik, Un-Bong;Kim, Yoon-Ji;Chae, Hwa-Sung;Park, Je-Uk;Julian, Stefania;Sugawara, Junji;Lee, Ui-Lyong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.48 no.1
    • /
    • pp.63-67
    • /
    • 2022
  • Controversies exist regarding the need for prophylactic extraction of mandibular third molars in patients who plan to undergo orthognathic surgery. An 18-year-old male patient was diagnosed with mandibular prognathism and maxillary retrognathism with mild facial asymmetry. He had a severely damaged mandibular first molar and a horizontally impacted third molar. After extraction of the first molar, the second molar was protracted into the first molar space, and the third molar erupted into the posterior line of occlusion. The orthognathic surgery involved clockwise rotation of the maxillomandibular complex as well as angle shaving and chin border trimming. Patients who are missing or have damaged mandibular molars should be monitored for eruption of third molars to replace the missing posterior tooth regardless of the timing of orthognathic surgery.

Finite-element investigation of the center of resistance of the maxillary dentition (상악 치아군의 저항중심의 위치에 관한 3차원 유한요소 해석)

  • Jeong, Gwang-Mo;Sung, Sang-Jin;Lee, Kee-Joon;Chun, Youn-Sic;Mo, Sung-Seo
    • The korean journal of orthodontics
    • /
    • v.39 no.2
    • /
    • pp.83-94
    • /
    • 2009
  • Objective: The aim of this study was to investigate the 3-dimensional position of the center of resistance of the 4 maxillary anterior teeth, 6 maxillary anterior teeth, and the full maxillary dentition using 3-dimensional finite element analysis. Methods: Finite element models included the whole upper dentition, periodontal ligament, and alveolar bone. The crowns of the teeth in each group were fixed with buccal and lingual arch wires and lingual splint wires to minimize individual tooth movement and to evenly disperse the forces to the teeth. A force of 100 g or 200 g was applied to the wire beam extended from the incisal edge of the upper central incisor, and displacement of teeth was evaluated. The center of resistance was defined as the point where the applied force induced parallel movement. Results: The results of study showed that the center of resistance of the 4 maxillary anterior teeth group, the 6 maxillary anterior teeth group, and the full maxillary dentition group were at 13.5 mm apical and 12.0 mm posterior, 13.5 mm apical and 14.0 mm posterior, and 11.0 mm apical and 26.5 mm posterior to the incisal edge of the upper central incisor, respectively. Conclusions: It is thought that the results from this finite element models will improve the efficiency of orthodontic treatment.