• Title/Summary/Keyword: Temporal super resolution

Search Result 5, Processing Time 0.021 seconds

Improvement of Frame Rate of Electro-Optical Sensor using Temporal Super Resolution based on Color Channel Extrapolation (채널별 색상정보 외삽법 기반 시간적 초해상도 기법을 활용한 전자광학 센서의 프레임률 향상 연구)

  • Noh, SangWoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.120-124
    • /
    • 2017
  • The temporal super resolution is a method for increasing the frame rate. Electro-optical sensors are used in various surveillance and reconnaissance weapons systems, and the spatial resolution and temporal resolution of the required electro-optical sensors vary according to the performance requirement of each weapon system. Because most image sensors capture images at 30~60 frames/second, it is necessary to increase the frame rate when the target moves and changes rapidly. This paper proposes a method to increase the frame rate using color channel extrapolation. Using a DMD, one frame of a general camera was adjusted to have different consecutive exposure times for each channel, and the captured image was converted to a single channel image with an increased frame rate. Using the optical flow method, a virtual channel image was generated for each channel, and a single channel image with an increased frame rate was converted to a color channel image. The performance of the proposed temporal super resolution method was confirmed by the simulation.

Super-Resolution Optical Fluctuation Imaging Using Speckle Illumination

  • Kim, Min-Kwan;Park, Chung-Hyun;Park, YongKeun;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.403.1-403.1
    • /
    • 2014
  • In conventional far-field microscopy, two objects separated closer than approximately half of an emission wavelength cannot be resolved, because of the fundamental limitation known as Abbe's diffraction limit. During the last decade, several super-resolution methods have been developed to overcome the diffraction limit in optical imaging. Among them, super-resolution optical fluctuation imaging (SOFI) developed by Dertinger et al [1], employs the statistical analysis of temporal fluorescence fluctuations induced by blinking phenomena in fluorophores. SOFI is a simple and versatile method for super-resolution imaging. However, due to the uncontrollable blinking of fluorophores, there are some limitations to using SOFI for several applications, including the limitations of available blinking fluorophores for SOFI, a requirement of using a high-speed camera, and a low signal-to-noise ratio. To solve these limitations, we present a new approach combining SOFI with speckle pattern illumination to create illumination-induced optical fluctuation instead of blinking fluctuation of fluorophore.. This technique effectively overcome the limitations of the conventional SOFI since illumination-induced optical fluctuation is possible to control unlike blinking phenomena of fluorophore. And we present the sub-diffraction resolution image using SOFI with speckle illumination.

  • PDF

Temporally adaptive and region-selective signaling of applying multiple neural network models

  • Ki, Sehwan;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.237-240
    • /
    • 2020
  • The fine-tuned neural network (NN) model for a whole temporal portion in a video does not always yield the best quality (e.g., PSNR) performance over all regions of each frame in the temporal period. For certain regions (usually homogeneous regions) in a frame for super-resolution (SR), even a simple bicubic interpolation method may yield better PSNR performance than the fine-tuned NN model. When there are multiple NN models available at the receivers where each NN model is trained for a group of images having a specific category of image characteristics, the performance of Quality enhancement can be improved by selectively applying an appropriate NN model for each image region according to its image characteristic category to which the NN model was dedicatedly trained. In this case, it is necessary to signal which NN model is applied for each region. This is very advantageous for image restoration and quality enhancement (IRQE) applications at user terminals with limited computing capabilities.

  • PDF

Content-Adaptive Model Update of Convolutional Neural Networks for Super-Resolution

  • Ki, Sehwan;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.234-236
    • /
    • 2020
  • Content-adaptive training and transmission of the model parameters of neural networks can boost up the SR performance with higher restoration fidelity. In this case, efficient transmission of neural network parameters are essentially needed. Thus, we propose a novel method of compressing the network model parameters based on the training of network model parameters in the sense that the residues of filter parameters and content loss are jointly minimized. So, the residues of filter parameters are only transmitted to receiver sides for different temporal portions of video under consideration. This is advantage for image restoration applications with receivers (user terminals) of low complexity. In this case, the user terminals are assumed to have a limited computation and storage resource.

  • PDF

Enhancing CT Image Quality Using Conditional Generative Adversarial Networks for Applying Post-mortem Computed Tomography in Forensic Pathology: A Phantom Study (사후전산화단층촬영의 법의병리학 분야 활용을 위한 조건부 적대적 생성 신경망을 이용한 CT 영상의 해상도 개선: 팬텀 연구)

  • Yebin Yoon;Jinhaeng Heo;Yeji Kim;Hyejin Jo;Yongsu Yoon
    • Journal of radiological science and technology
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • Post-mortem computed tomography (PMCT) is commonly employed in the field of forensic pathology. PMCT was mainly performed using a whole-body scan with a wide field of view (FOV), which lead to a decrease in spatial resolution due to the increased pixel size. This study aims to evaluate the potential for developing a super-resolution model based on conditional generative adversarial networks (CGAN) to enhance the image quality of CT. 1761 low-resolution images were obtained using a whole-body scan with a wide FOV of the head phantom, and 341 high-resolution images were obtained using the appropriate FOV for the head phantom. Of the 150 paired images in the total dataset, which were divided into training set (96 paired images) and validation set (54 paired images). Data augmentation was perform to improve the effectiveness of training by implementing rotations and flips. To evaluate the performance of the proposed model, we used the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Deep Image Structure and Texture Similarity (DISTS). Obtained the PSNR, SSIM, and DISTS values of the entire image and the Medial orbital wall, the zygomatic arch, and the temporal bone, where fractures often occur during head trauma. The proposed method demonstrated improvements in values of PSNR by 13.14%, SSIM by 13.10% and DISTS by 45.45% when compared to low-resolution images. The image quality of the three areas where fractures commonly occur during head trauma has also improved compared to low-resolution images.