• Title/Summary/Keyword: Temporal oxygen trends

Search Result 15, Processing Time 0.027 seconds

Spatial and Temporal Variability of Water Quality in Geum-River Watershed and Their Influences by Landuse Pattern (금강 수계의 시.공간적 수질특성과 토지이용도의 영향)

  • Han, Jeong-Ho;Bae, Young-Ju;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.385-399
    • /
    • 2010
  • The objective of this study was to analyze long term temporal trends of water chemistry and spatial heterogeneity for 83 sampling sites of Geum-River watershed using water quality dataset during 2003~2007 (obtained from the Ministry of Environment, Korea). The water quality, based on multi-parameters of temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), total phosphorus (TP), and electric conductivity (EC), largely varied depending on the landuse patterns, years and seasons. The watershed was classified into three different landuse types: forest stream (Fo), agricultural stream (Ag), and urban stream (Ur). Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of summer monsoon rain. Conductivity, used as a key indicator for an ionic dilution during rainy season, and nutrients of TN and TP had inverse functions of precipitation. BOD, COD decrease during the rainy season. Minimum values in the conductivity, TN, and TP were observed during the summer monsoon, indicating an ionic and nutrient dilution of river water by the rainwater. In contrast, major inputs of suspended solids (SS) occurred during the period of summer monsoon. The landuse patterns analyses, based on the variables of BOD, COD, TN, TP and SS, showed that the values were greater in the agricultural stream (Ag) than in the forest stream (Fo) and urban stream (Ur) and that water quality was worst in the urban stream (Ur). The overall dataset suggest that efficient water quality management, especially in Gap-Stream and Miho-Stream, which showed worst water quality is required along with some of urban stream (Ur), based on the analysis of landuse patterns.

Continuity Simulation and Trend Analysis of Water Qualities in Incoming Flows to Lake Paldang by Log Linear Models (로그선형모델을 이용한 팔당호 유입지류 수질의 연속성 시뮬레이션과 경향 분석)

  • Na, Eun-Hye;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.336-343
    • /
    • 2003
  • Two types of statistical models, simple and multivariate log linear models, were studied for continuity simulation and trend analysis of water qualities in incoming flows to Lake Paldang. Water quality is a function of one independent variable (flow) in the simple log linear model, and of three different variables (flow, time, and seasonal cycle) in multivariate model. The independent variables act as surrogate variables of water quality in both models. The model coefficients were determined by the monthly data. The water qualities included 5-day Biochemical Oxygen Demand ($BOD_5$), Total Nitrogen (TN), and Total Phosphorus (TP) measured from 1995 to 2000 in the South and the North branches of Han River and the Kyoungan Stream. The results indicated that the multivariate model provided better agreements with field measurements than the simple one in a31 attempted cases. Flow dependency, seasonality, and temporal trends of water quality were tested on the determined coefficients of the multivariate model. The test of flow dependency indicated that BOD concentrations decreased as the water flow increased. In TN and TP concentrations, however, there were no discernible flow effects. From the temporal trend analyses, the following results were obtained: 1) no trends on BOD at all three upstreams, 2) increase on TN at the South Branch and the Kyoungan Stream, 3)decrease on TN at the North Branch,4) no trends on TP at the North and the South Branches and 5) increase on TP at the Kyoungan Stream by 3 to 8% per years. The seasonality test showed that there were significant seasonal variations in all three water qualities at three incoming flows.

Trend Analysis of Water Quality in Dongjin River Watershed (동진강 유역의 수질 경향 분석에 관한 연구)

  • Lee, Hye-Won;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • Spatial and temporal analysis of water quality was performed for eleven monitoring stations in Dongjin River watershed in order to determine the trends of monthly water quality. The monthly water quality data of biochemical oxygen demand (BOD), total nitrogen (TN) and total phosphorus (TP) during $1995{\sim}2004$, were analyzed utilizing Seasonal Mann-Kendall test, LOWESS and three-dimensional graphic approaches. The results indicated that BOD and TN concentrations had the downward trend, but TP showed the upward trend, especially in Gobucheon. This numerical and graphic analysis is the useful tool to analyze the long-term trend of water quality in a large river system.

Comparative Analysis of Long-term Water Quality Data Monitored in Andong and Imha Reservoirs (안동호와 임하호에서 관측한 장기 수질자료의 비교 분석)

  • Park, Sun-Jae;Choi, Seong-Mo;Park, Jong-Seok;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.21-31
    • /
    • 2006
  • The objectives of this study were to analyze trends of temporal water quality and trophic state in Andong and Imha reservoirs using chemical dataset during 1993 ${\sim}$ 2004, obtained from the Ministry of Environment, Korea. According to long-term limnological analyses, Suspended solids (SS) in Imha Reservoir were 2 ${\sim}$ 8 fold2 greater, than those in SS of Andong Reservoir, and the high solids increased total phosphorus (TP) and biological oxygen demand ($BOD_5$) and decreased the transparency, measured as Secchi depth (SD). Chlorophyll-a (CHL-a) increased little or decreased slightly in the both reservoirs during the high solids, resulting in reduced yields of CHL-a : TP ratios. The deviation analysis of Trophic State Index (TSI) in Imha Reservoir showed that about 70% of TSI (CHL-a)-TSI (SD) and TSI (CHL-a)-TSI(TP) values were less than zero and the lowest values were-60, indicating that influence of inorganic solids (or non-volatile solids) on phytoplankton growth was evident in Imha Reservoir and the impact was greater than that of Andong Reservoir. Inorganic solids in Imha Reservoir resulted in light limitation on phytoplankton growth and thus contributed variations in the relations among three parameters of trophic state index. Especially, seasonal data analysis of nutrients in both reservoirs showed that during the postmonsoon, mean TP concentration was Imha Reservoir greater in than that in Andong Reservoir. The higher TP concentrantion was mainly attributed to increases of inorganic solids from soil erosions and nonpoint source inputs within the watershed. The high inorganic turbidity in Imha Reservoir should be reduced for the conservation of water quality for, especially a tap water supply.

Residual Effects of Basic Oxygen Furnace Slag as Soil Conditioner in the Rice Paddy Field (논토양 벼 재배에서 제강슬래그의 토양개량제로서의 시용효과)

  • Lim, June-Taeg;Kim, Young-Sin;Park, Jn-Jin;Lee, Choong-Il;Hyun, Kyu-Hawn;Kwon, Byung-Sun;Kim, Hak-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.205-211
    • /
    • 2000
  • This study was conducted to evaluate the residual effects of basic oxygen furnace (BOF) slag applied in rice paddy fields as soil conditioner one year before. The experimental fields of Lim et al. (2000) located in Youjung and Nampyung were used for this purpose. Both variety (Oryza sativa L. cv. Dongjinbyeo) and cultural practices were the same as those in Lim et al. (2000). Soil chemical properties, plant height, number of tillers per plant, yield and yield components were observed. The temporal variation of treatment mean value in soil chemical properties appeared to be similar trends in both Youjung and Nampyung experimental fields. Soil pH and Ca content were still significantly higher than those in control treatment up to July of the second season, but decreased progressively as time passed. However, the effects lasted longer as slag rate became higher. BOF slag seems to have residual effects as a soil conditioner or Ca fertilizer in soil for two years. BOF slag rate of $4Mg\;ha^{-1}$ raised soil pH almost the same as lime rate of $2Mg\;ha^{-1}$. Content of $SiO_2$ in soil applied slag appeared to be higher compared with control. Fe and Mg content in soil with slag treatment was significantly higher than that of control in 1997, but it was almost the same level as that of control in 1998. In YouJung experimental field, rough rice yield of slag teatment became higher as slage rate incresed. Slag rate of $12Mg\;ha^{-1}$ showed the highest rough rice yield of $5,400kg\;ha^{-1}$ among treatment, which was 14% higher than that of control with $4,720kg\;ha^{-1}$. Slag rate of $12Mg\;ha^{-1}$ showed relatively higher plant height and higher number of tillers at the early growth stage compared with other treatments. In NamPyung experimental field, rough rice yield was the highest at the plot of lime rate $2Mg\;ha^{-1}$ and became higher as slag rate increased. There were no significant differences in rough rice yield between lime treatment and slag treatments. Slag rate of $12Mg\;ha^{-1}$ showed the highest rough rice yield of $7,170kg\;ha^{-1}$ among slag treatment, which was 8% significantly higher than that of control with $6,670kg\;ha^{-1}$. Slag rate of $12Mg\;ha^{-1}$ showed relatively slower growth in plant height at the early growth stage, but superior growth at the later growth stage, and significantly higher number of spiklets per panicle and 1000-grain weight than that of control.

  • PDF