• Title/Summary/Keyword: Temporal and spatial distribution of rainfall

Search Result 68, Processing Time 0.021 seconds

Rainfall and Water Quality Characteristics of Saemangeum Area

  • Monica, Nankya;Choi, Kyung-Sook
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.4
    • /
    • pp.203-209
    • /
    • 2014
  • This study investigated characteristics of rainfall and water quality in Saemangeum area with attention to temporal and spatial distributions. A high variability in rainfall was noted during July and August. The temporal analysis of water quality data indicated that DO and TN as well as BOD, COD and SS were within national standards except for increased concentrations during spring and summer, unlike TP values that indicated poor water quality. Standard deviation showed a high variability in SS among the seasons most especially during summer. The high dispersion indicated variability in the chemical composition of pollutants where the temporal and spatial variations caused by polluting sources and/or seasonal changes were most evident for BOD and COD during winter and spring. The box plots and bar charts showed steadily low concentrations of BOD, COD, TN and TP except within Iksan and notable significant variations in SS concentrations among the monitoring stations. Thus, high pollution levels requiring intervention were identified in Mangyeong river basin with particular concern for areas represented by Iksan station. It was noted that Iksan received a considerable amount of rainfall which meant high runoff which could explain the significant pollution levels revealed in the water quality spatial distribution. Major pollution contributing pollutants within Saemangeum area were identified as SS, BOD, COD and TN. Therefore the present results could be used as a guideline for the temporal and spatial distributions analysis of both rainfall and water quality in Saemangeum watershed.

Comparative Evaluation of Reproducibility for Spatio-temporal Rainfall Distribution Downscaled Using Different Statistical Methods (통계적 공간상세화 기법의 시공간적 강우분포 재현성 비교평가)

  • Jung, Imgook;Hwang, Syewoon;Cho, Jaepil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Various techniques for bias correction and statistical downscaling have been developed to overcome the limitations related to the spatial and temporal resolution and error of climate change scenario data required in various applied research fields including agriculture and water resources. In this study, the characteristics of three different statistical dowscaling methods (i.e., SQM, SDQDM, and BCSA) provided by AIMS were summarized, and climate change scenarios produced by applying each method were comparatively evaluated. In order to compare the average rainfall characteristics of the past period, an index representing the average rainfall characteristics was used, and the reproducibility of extreme weather conditions was evaluated through the abnormal climate-related index. The reproducibility comparison of spatial distribution and variability was compared through variogram and pattern identification of spatial distribution using the average value of the index of the past period. For temporal reproducibility comparison, the raw data and each detailing technique were compared using the transition probability. The results of the study are presented by quantitatively evaluating the strengths and weaknesses of each method. Through comparison of statistical techniques, we expect that the strengths and weaknesses of each detailing technique can be represented, and the most appropriate statistical detailing technique can be advised for the relevant research.

Evaluation of the Application of Radar Data for Local Landslide Warning (국지적 산사태 발생 예보를 위한 레이더 자료의 활용성 평가)

  • Choi, Yun Seok;Choi, Cheon Kyu;Kim, Kyung Tak;Kim, Joo Hun
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.191-201
    • /
    • 2013
  • Landslide in Korea occurs generally in summer, and rainfall is a major factor to trigger landslides. This study evaluates the applicability of radar rainfall to estimate landslide occurs locally in mountainous area. Temporal changes in spatial distribution of rainfall is analyzed using radar data, and the characteristics of rainfall in landslide area during the landslide occurred in Inje, July 2006. This study shows radar rainfall field can estimate local landslides more precisely than the rainfall data from ground gauges.

Influence of Spatial Rainfall Distribution on Sediment Yield: An Experimental Study (강우 공간분포가 토사유출에 미치는 영향의 실험적 고찰)

  • Shin, Sanghoon;Kim, Won;Lee, Seungyub;Paik, Kyungrock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.111-117
    • /
    • 2015
  • We investigate the influence of spatial rainfall distribution on hillslope soil erosion through laboratory experiments. Two distinct spatial distributions are examined in this study, i.e., rainfall concentrated on central area versus upper area of hillslope. During the entire period of 8 hours for each experiment, direct runoff, subsurface flow, and sediment yield are measured at high temporal resolution (10 minutes). Compared to the case that rainfalll concentrated on central area, upstream concentrated rainfall results in lower peak of the sediment yield curve while greater cumulative sediment yield. Cumulative sediment yield increases over time linearly but its growth rate shows a sudden decrease at around 2 hours. This should be taken into consideration when temporal variability of sediment yield is estimated from observed total amount, and demonstrates the necessity of measuring sediment yield at high temporal resolution.

Rainfall analysis considering watershed characteristics and temporal-spatial characteristics of heavy rainfall (집중호우의 시·공간적 특성과 유역특성을 고려한 강우분석 연구)

  • Kim, Min-Seok;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.739-745
    • /
    • 2018
  • Recently, the incidence of heavy rainfall is increasing. Therefore, a rainfall analysis should be performed considering increasing frequency. The current rainfall analysis for hydrologic design use the hourly rainfall data of ASOS with a density of 36 km on the Korean Peninsula. Therefore, medium and small scale watershed included Thiessen network at the same rainfall point are analyzed with the same design rainfall and time distribution. This causes problem that the watershed characteristics can not be considered. In addition, there is a problem that the temporal-spatial change of the heavy rainfall occurring in the range of 10~20 km can not be considered. In this study, Author estimated design rainfall considering heavy rainfall using minutely rainfall data of AWS, which are relatively dense than ASOS. Also, author analyzed the time distribution and runoff of each case to estimate the huff's method suitable for the watershed. The research result will contribute to the estimation of the design hydrologic data considering the heavy rainfall and watershed characteristics.

Spatial-Temporal Interpolation of Rainfall Using Rain Gauge and Radar (강우계와 레이더를 이용한 강우의 시공간적인 활용)

  • Hong, Seung-Jin;Kim, Byung-Sik;Hahm, Chang-Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.37-48
    • /
    • 2010
  • The purpose of this paper is to evaluate how the rainfall field effect on a runoff simulation using grid radar rainfall data and ground gauge rainfall. The Gwangdeoksan radar and ground-gauge rainfall data were used to estimate a spatial rainfall field, and a hydrologic model was used to evaluate whether the rainfall fields created by each method reproduced a realistically valid spatial and temporal distribution. Pilot basin in this paper was the Naerin stream located in Inje-gun, Gangwondo, 250m grid scale digital elevation data, land cover maps, and soil maps were used to estimate geological parameters for the hydrologic model. For the rainfall input data, quantitative precipitation estimation(QPE), adjusted radar rainfall, and gauge rainfall was used, and then compared with the observed runoff by inputting it into a $Vflo^{TM}$ model. As a result of the simulation, the quantitative precipitation estimation and the ground rainfall were underestimated when compared to the observed runoff, while the adjusted radar rainfall showed a similar runoff simulation with the actual observed runoff. From these results, we suggested that when weather radars and ground rainfall data are combined, they have a greater hydrological usability as input data for a hydrological model than when just radar rainfall or ground rainfall is used separately.

Analysis of Temporal and Spatial Variation of Precipitable Water Vapor According to Path of Typhoon EWINIAR using GPS Permanent Stations

  • Won, Jihye;Kim, Dusik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.87-95
    • /
    • 2015
  • In this study, the temporal and spatial variation in precipitable water vapor (PWV) was analyzed for typhoon Ewiniar which had made landfall in the Korean peninsula in 2006. To make a contour map of PWV, zenith total delay (ZTD) was calculated using about 60 GPS permanent stations in Korea, and the pressure and temperature data of nearby AWS stations were interpolated and applied to the equation for calculating the PWV. While Typhoon Ewiniar was migrating north from the southern coast to the eastern coast of Korea, the PWV migrated showing a spatial distribution similar to that of rainfall. Also, the fluctuating pattern of the normalized PWV was analyzed, and the moving speed of the PWV was estimated using the delay time of the increase/decrease pattern in the eight-test stations. The result indicated that the moving speed of the PWV was about 35 km/h, which was similar to the average moving speed of the typhoon (38.9 km/h).

The Study on Flood Runoff Simulation using Runoff Model with Gauge-adjusted Radar data (보정 레이더 자료와 유출 모형을 이용한 홍수유출모의에 관한 연구)

  • Bae, Young-Hye;Kim, Byung-Sik;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.51-61
    • /
    • 2010
  • Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Therefore, it is important to understand the spatial-temporal features of rainfall. In this study, RADAR rainfall was used to calculate gridded areal rainfall which reflects the spatial-temporal variability. In addition, Kalman-filter method, a stochastical technique, was used to combine ground rainfall network with RADAR rainfall network to calculate areal rainfall. Thiessen polygon method, Inverse distance weighting method, and Kriging method were used for calculating areal rainfall, and the calculated data was compared with adjusted areal RADAR rainfall measured using the Kalman-filter method. The result showed that RADAR rainfall adjusted with Kalman-filter method well-reproduced the distribution of raw RADAR rainfall which has a similar spatial distribution as the actual rainfall distribution. The adjusted RADAR rainfall also showed a similar rainfall volume as the volume shown in rain gauge data. Anseong-Cheon basin was used as a study area and the RADAR rainfall adjusted with Kalman-filter method was applied in $Vflo^{TM}$ model, a physical-based distributed model, and ModClark model, a semi-distributed model. As a result, $Vflo^{TM}$ model simulated peak time and peak value similar to that of observed hydrograph. ModClark model showed good results for total runoff volume. However, for verifying the parameter, $Vflo^{TM}$ model showed better reproduction of observed hydrograph than ModClark model. These results confirmed that flood runoff simulation is applicable in domestic settings(in South Korea) if highly accurate areal rainfall is calculated by combining gauge rainfall and RADAR rainfall data and the simulation is performed in link to the distributed hydrological model.

On the Variations of Spatial Correlation Structure of Rainfall (강우공간상관구조의 변동 특성)

  • Kim, Kyoung-Jun;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.12
    • /
    • pp.943-956
    • /
    • 2007
  • Among various statistics, the spatial correlation function, that is "correlogram", is frequently used to evaluate or design the rain gauge network and to model the rainfall field. The spatial correlation structure of rainfall has the significant variation due to many factors. Thus, the variation of spatial correlation structure of rainfall causes serious problems when deciding the spatial correlation function of rainfall within the basin. In this study, the spatial rainfall structure was modeled using bivariate mixed distributions to derive monthly spatial correlograms, based on Gaussian and lognormal distributions. This study derived the correlograms using hourly data of 28 rain gauge stations in the Keum river basin. From the results, we concluded as following; (1) Among three cases (Case A, Case B, Case C) considered, the Case A(+,+) seems to be the most relevant as it is not distorted much by zero measurements. (2) The spatial correlograms based on the lognormal distribution, which is theoretically as well as practically adequate, is better than that based on the Gaussian distribution. (3) The spatial correlation in July exponentially decrease more obviously than those in other months. (4) The spatial correlograms should be derived considering the temporal resolution(hourly, daily, etc) of interest.

Development of Soil Moisture Monitoring System for Effective Soil Moisture Measurement for Hillslope Using Flow Distribution Algorithm and TDR (산지사면의 효과적인 토양수분 측정을 위한 흐름분배 알고리즘과 TDR을 이용한 토양수분 측정망의 구성)

  • Kang, Chang-Yong;Kim, Sang-Hyun;Jung, Sung-Won;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.1
    • /
    • pp.31-41
    • /
    • 2004
  • A soil moisture measuring method of hillslope for Korean watershed is developed to configure spatial-temporal distribution of soil moisture. Intensive surveying of topography had been performed to make a digital elevation model(DEM). Flow distribution algorithms were applied and a measurement system was established to maximize representative features of spatial variation. Soil moisture contribution mechanisms of rainfall-runoff process have been derived. Measurements were performed at the right side hillslope of Buprunsa located at the Sulmachun watershed. A Multiplex system has been operated and spatial-temporal soil moisture data have been acquired. Relatively high correlation relationship between flow distribution algorithm and measurement data can be found on the condition of high humidity.