• Title/Summary/Keyword: Temporal Properties

Search Result 341, Processing Time 0.031 seconds

Temporal and spatial variations of vegetation in a riparian zone of South Korea

  • Park, Hyekyung;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.62-71
    • /
    • 2020
  • Understanding vegetation structure and the relationship with environmental factors has been crucial for restoration and conservation of riparian zones. In this study, we conducted field survey in a riparian zone of Namhan River in South Korea both before and after flooding in order to understand temporal and spatial variations of riparian vegetation. There were significant temporal and spatial variations in species composition, and distribution patterns of vegetation were different along a gradient of elevation above the water level. At low elevation, Zizania latifolia was dominant throughout the field survey periods, and Bidens frondosa began to grow late and dominated both in post-flooding 1 and 2. Prior to flooding, Scirpus radicans and Polygonum thunbergii were widely distributed at middle elevation, while Artemisia vulgaris, Phragmites australis, and Miscanthus sacchariflorus were dominant at high elevation. After flooding, P. thunbergii was dominant at middle elevation with most other species decreasing, and more invasive or pioneer plants, including Artemisia princeps, H. scandens, and Sicyos angulatus, were observed at high elevation. Species composition and distribution patterns were homogeneous at low elevation, whereas dynamic variations of vegetation were observed both temporally and spatially at higher elevations. Elevation and distance from the water front were the most principal factors governing vegetation structure. Furthermore, soil physicochemical properties were also found to determine species composition and distribution patterns. These results indicate that vegetation structure in the riparian zones is formed by the combined effects of hydrological regime and soil physicochemical properties, inherent characteristics of species, and interspecific competition. Understanding of temporal and spatial variations of riparian vegetation may provide useful insights into ecological restoration and conservation of the vegetation within the riparian zones.

Temporal Changes and Correlations Between the Chemical Characteristics of Soils in the Case of the Reclaimed Costal Area of Kyung-Gi Province, Korea (서해안 임해매립지 녹지공간 토양성분들의 상관성 및 경시적 변화특성)

  • 구본학;강재선;김정욱
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.161-169
    • /
    • 2000
  • In this study, the temporal changes in the chemical characteristics of soil in a reclaimed coastal area, the Shihwa Industrial Complex in the West Coast in Kyung-Gi Province, and the correlations between chemical components were investigated to provide useful information needed for introducing vegetation in the area. The sites were filled with mountain forest soils from 1987 to 1996, and developed into various landuses such as neighbourhood parks, children's parks, buffer greens, pedestrian roads and others. The correlation analyses shoed that pH, organic matter(OM) and available P205 had not been closely related to other chemical parameters such as various cations electro-conductivity(EC) and cation exchange capacity(CEC): especially, pH showed a very low correlation with other factors. The EC turned out to have positive relationships with cations, especially with Na+ ions. There seemed to be fairly good correlations between cations except Ca++ ion. The relation between cations and OM was inconclusive possible because the OM contents in the soils were too low for the analysis. The OM seemed to increase slowly with time and the EC decreased slowly. The salinity and CEC in the original soils decreased rapidly possibly because of leaching. It is believed that there were some external disturbances such as rainfall which had affected the soil properties. The soils sampled in dry season showed a very high salinity. From this it is possible to assume that the rainfall would affect the sol properties significantly. So it is necessary to continue further studies to investigate the impacts of external disturbances such as rainfall on vertical soil profile and temporal variations as well as to delineate correlations between parameters with external disturbances controlled.

  • PDF

Nonlinear Optical Polymers Possessing Thermal and Temporal Stability: Potentials and Prospect

  • Kim, Dong-Wook;Ju, Hyun-Kyung;Ahn, Soo-Mi;Yoon, Sung-Cheol;Lim, Jong-Sun;Park, Seung-Ku;Lee, Chang-Jin
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.165-165
    • /
    • 2006
  • We prepared nonlinear optical (NLO) polymers possessing thermal and temporal stability, which were based on the polyimides appended with NLO chromophores. NLO chromophores with a terminal hydroxyl group have been synthesized by coupling between aminobenzene or julolidine donor and phenylene bridge, and then subsequent coupling between the resulting product and tricyanofuran acceptor. The chromophores were chemically bonded to the polyimides backbone through Mitsunobu reaction. The NLO polymers showed $160-170^{\circ}C$ of Tgs and were thermally stable up to $200^{\circ}C$. We obtained optical quality films by spincoating and evaluated their electro-optical properties and temporal stability.

  • PDF

Shot Group and Representative Shot Frame Detection using Similarity-based Clustering

  • Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.37-43
    • /
    • 2016
  • This paper introduces a method for video shot group detection needed for efficient management and summary of video. The proposed method detects shots based on low-level visual properties and performs temporal and spatial clustering based on visual similarity of neighboring shots. Shot groups created from temporal clustering are further clustered into small groups with respect to visual similarity. A set of representative shot frames are selected from each cluster of the smaller groups representing a scene. Shots excluded from temporal clustering are also clustered into groups from which representative shot frames are selected. A number of video clips are collected and applied to the method for accuracy of shot group detection. We achieved 91% of accuracy of the method for shot group detection. The number of representative shot frames is reduced to 1/3 of the total shot frames. The experiment also shows the inverse relationship between accuracy and compression rate.

Context-Awareness Service Modeling of Realtime Sensor Network using Enhanced Petri-Net (Enhanced Petri-Net을 이용한 실시간 센서 네트워크의 상황 정보 서비스 모델링)

  • Lee, Jae-Bong;Lee, Hong-Ro
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.28-36
    • /
    • 2010
  • Some context is characterized by a single event in computing environment, but many other contexts are determined by a lot of things which occur with a space and a time. The Realtime Sensor Network context-awareness service that interacts with the physical space can have property such as time. A methodology that is specified the relationship between the contexts and the service needs to be developed to Realtime context-awareness deal with spatio-temporal. In this paper, we propose an approach which should include spatio-temporal property in the context model, and verify its effectiveness using enhanced Petri-Net. The context-awareness service modeling of Realtime Sensor Network is discussed the properties of model such as basic Petri-Net, patterned Petri-Net, or Spatio-temporal Petri-Net. The proposed methodology demonstrated using an example that is SAEMANGUEM warming watching system. The use of Spatio-temporal Petri-Net will contribute not only to develop the application but also to model the spatio-temporal context awareness.

Spatio-Temporal Semantic Sensor Web based on SSNO (SSNO 기반 시공간 시맨틱 센서 웹)

  • Shin, In-Su;Kim, Su-Jeong;Kim, Jeong-Joon;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.9-18
    • /
    • 2014
  • According to the recent development of the ubiquitous computing environment, the use of spatio-temporal data from sensors with GPS is increasing, and studies on the Semantic Sensor Web using spatio-temporal data for providing different kinds of services are being actively conducted. Especially, the W3C developed the SSNO(Semantic Sensor Network Ontology) which uses sensor-related standards such as the SWE(Sensor Web Enablement) of OGC and defines classes and properties for expressing sensor data. Since these studies are available for the query processing about non-spatio-temporal sensor data, it is hard to apply them to spatio-temporal sensor data processing which uses spatio-temporal data types and operators. Therefore, in this paper, we developed the SWE based on SSNO which supports the spatio-temporal sensor data types and operators expanding spatial data types and operators in "OpenGIS Simple Feature Specification for SQL" by OGC. The system receives SensorML(Sensor Model Language) and O&M (Observations and Measurements) Schema and converts the data into SSNO. It also performs the efficient query processing which supports spatio-temporal operators and reasoning rules. In addition, we have proved that this system can be utilized for the web service by applying it to a virtual scenario.

Temporal Variations in Optical Properties and Direct Radiative Forcing of Different Aerosol Chemical Components in Seoul using Hourly Aerosol Sampling (서울지역 시간별 에어로솔 자료를 이용한 화학성분별 광학특성 및 직접 복사강제력의 시간 변화 분석)

  • Song, Sang-Keun;Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • Temporal variations of optical properties of urban aerosol in Seoul were estimated by the Optical Properties of Aerosols and Clouds (OPAC) model, based on hourly aerosol sampling data in Seoul during the year of 2010. These optical properties were then used to calculate direct radiative forcing during the study period. The optical properties and direct radiative forcing of aerosol were calculated separately for four chemical components such as water-soluble, insoluble, black carbon (BC), and sea-salt aerosols. Overall, the coefficients of absorption, scattering, and extinction, as well as aerosol optical depth (AOD) for water-soluble component predominated over three other aerosol components, except for the absorption coefficient of BC. In the urban environment (Seoul), the contribution of AOD (0.10~0.12) for the sum of OC and BC to total AODs ranged from 23% (spring) to 31% (winter). The diurnal variation of AOD for each component was high in the morning and low in the late afternoon during the most of seasons, but the high AODs at 14:00 and 15:00 LST in summer and fall, respectively. The direct negative radiative forcing of most chemical components (especially, $NO_3{^-}$ of water-soluble) was highest in January and lowest in September. Conversely, the positive radiative forcing of BC was highest in November and lowest in August due to the distribution pattern of BC concentration.

Fine Registration between Very High Resolution Satellite Images Using Registration Noise Distribution (등록오차 분포특성을 이용한 고해상도 위성영상 간 정밀 등록)

  • Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.125-132
    • /
    • 2017
  • Even after applying an image registration, Very High Resolution (VHR) multi-temporal images acquired from different optical satellite sensors such as IKONOS, QuickBird, and Kompsat-2 show a local misalignment due to dissimilarities in sensor properties and acquisition conditions. As the local misalignment, also referred to as Registration Noise (RN), is likely to have a negative impact on multi-temporal information extraction, detecting and reducing the RN can improve the multi-temporal image processing performance. In this paper, an approach to fine registration between VHR multi-temporal images by considering local distribution of RN is proposed. Since the dominant RN mainly exists along boundaries of objects, we use edge information in high frequency regions to identify it. In order to validate the proposed approach, datasets are built from VHR multi-temporal images acquired by optical satellite sensors. Both qualitative and quantitative assessments confirm the effectiveness of the proposed RN-based fine registration approach compared to the manual registration.

Mining Frequent Itemsets using Time Unit Grouping (시간 단위 그룹핑을 이용한 빈발 아이템셋 마이닝)

  • Hwang, Jeong Hee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.647-653
    • /
    • 2022
  • Data mining is a technique that explores knowledge such as relationships and patterns between data by exploring and analyzing data. Data that occurs in the real world includes a temporal attribute. Temporal data mining research to find useful knowledge from data with temporal properties can be effectively utilized for predictive judgment that can predict the future. In this paper, we propose an algorithm using time-unit grouping to classify the database into regular time period units and discover frequent pattern itemsets in time units. The proposed algorithm organizes the transaction and items included in the time unit into a matrix, and discovers frequent items in the time unit through grouping. In the experimental results for the performance evaluation, it was found that the execution time was 1.2 times that of the existing algorithm, but more than twice the frequent pattern itemsets were discovered.