• Title/Summary/Keyword: Temporal Data Mining

Search Result 85, Processing Time 0.029 seconds

Labeling Big Spatial Data: A Case Study of New York Taxi Limousine Dataset

  • AlBatati, Fawaz;Alarabi, Louai
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.207-212
    • /
    • 2021
  • Clustering Unlabeled Spatial-datasets to convert them to Labeled Spatial-datasets is a challenging task specially for geographical information systems. In this research study we investigated the NYC Taxi Limousine Commission dataset and discover that all of the spatial-temporal trajectory are unlabeled Spatial-datasets, which is in this case it is not suitable for any data mining tasks, such as classification and regression. Therefore, it is necessary to convert unlabeled Spatial-datasets into labeled Spatial-datasets. In this research study we are going to use the Clustering Technique to do this task for all the Trajectory datasets. A key difficulty for applying machine learning classification algorithms for many applications is that they require a lot of labeled datasets. Labeling a Big-data in many cases is a costly process. In this paper, we show the effectiveness of utilizing a Clustering Technique for labeling spatial data that leads to a high-accuracy classifier.

Enhancing Classification Performance of Temporal Keyword Data by Using Moving Average-based Dynamic Time Warping Method (이동 평균 기반 동적 시간 와핑 기법을 이용한 시계열 키워드 데이터의 분류 성능 개선 방안)

  • Jeong, Do-Heon
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.4
    • /
    • pp.83-105
    • /
    • 2019
  • This study aims to suggest an effective method for the automatic classification of keywords with similar patterns by calculating pattern similarity of temporal data. For this, large scale news on the Web were collected and time series data composed of 120 time segments were built. To make training data set for the performance test of the proposed model, 440 representative keywords were manually classified according to 8 types of trend. This study introduces a Dynamic Time Warping(DTW) method which have been commonly used in the field of time series analytics, and proposes an application model, MA-DTW based on a Moving Average(MA) method which gives a good explanation on a tendency of trend curve. As a result of the automatic classification by a k-Nearest Neighbor(kNN) algorithm, Euclidean Distance(ED) and DTW showed 48.2% and 66.6% of maximum micro-averaged F1 score respectively, whereas the proposed model represented 74.3% of the best micro-averaged F1 score. In all respect of the comprehensive experiments, the suggested model outperformed the methods of ED and DTW.

Discovery of Frequent Sequence Pattern in Moving Object Databases (이동 객체 데이터베이스에서 빈발 시퀀스 패턴 탐색)

  • Vu, Thi Hong Nhan;Lee, Bum-Ju;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.179-186
    • /
    • 2008
  • The converge of location-aware devices, GIS functionalities and the increasing accuracy and availability of positioning technologies pave the way to a range of new types of location-based services. The field of spatiotemporal data mining where relationships are defined by spatial and temporal aspect of data is encountering big challenges since the increased search space of knowledge. Therefore, we aim to propose algorithms for mining spatiotemporal patterns in mobile environment in this paper. Moving patterns are generated utilizing two algorithms called All_MOP and Max_MOP. The first one mines all frequent patterns and the other discovers only maximal frequent patterns. Our proposed approach is able to reduce consuming time through comparison with DFS_MINE algorithm. In addition, our approach is applicable to location-based services such as tourist service, traffic service, and so on.

Impacts of Urban Land Cover Change on Land Surface Temperature Distribution in Ho Chi Minh City, Vietnam

  • Le, Thi Thu Ha;Nguyen, Van Trung;Pham, Thi Lan;Tong, Thi Huyen Ai;La, Phu Hien
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.113-122
    • /
    • 2021
  • Urban expansion, particularly converting sub-urban areas to residential and commercial land use in metropolitan areas, has been considered as a significant signal of regional economic development. However, this results in urban climate change. One of the key impacts of rapid urbanization on the environment is the effect of UHI (Urban Heat Island). Understanding the effects of urban land cover change on UHI is crucial for improving the ecology and sustainability of cities. This research reports an application of remote sensing data, GIS (Geographic Information Systems) for assessing effects of urban land cover change on the LST (Land Surface Temperature) and heat budget components in Ho Chi Minh City, where is one of the fastest urbanizing region of Vietnam. The change of urban land cover component and LST in the city was derived by using multi-temporal Landsat data for the period of 1998 - 2020. The analysis showed that, from 1998 to 2020 the city had been drastically urbanized into multiple directions, with the urban areas increasing from approximately 125.281 km2 in 1998 to 162.6 km2 in 2007, and 267.2 km2 in 2020, respectively. The results of retrieved LST revealed the radiant temperature for 1998 ranging from 20.2℃ to 31.2℃, while that for 2020 remarkably higher ranging from 22.1℃ to 42.3℃. The results also revealed that given the same percentage of urban land cover components, vegetation area is more effective to reduce the value of LST, meanwhile the impervious surface is the most effective factor to increase the value of the LST.

A MapReduce-Based Workflow BIG-Log Clustering Technique (맵리듀스기반 워크플로우 빅-로그 클러스터링 기법)

  • Jin, Min-Hyuck;Kim, Kwanghoon Pio
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.87-96
    • /
    • 2019
  • In this paper, we propose a MapReduce-supported clustering technique for collecting and classifying distributed workflow enactment event logs as a preprocessing tool. Especially, we would call the distributed workflow enactment event logs as Workflow BIG-Logs, because they are satisfied with as well as well-fitted to the 5V properties of BIG-Data like Volume, Velocity, Variety, Veracity and Value. The clustering technique we develop in this paper is intentionally devised for the preprocessing phase of a specific workflow process mining and analysis algorithm based upon the workflow BIG-Logs. In other words, It uses the Map-Reduce framework as a Workflow BIG-Logs processing platform, it supports the IEEE XES standard data format, and it is eventually dedicated for the preprocessing phase of the ${\rho}$-Algorithm that is a typical workflow process mining algorithm based on the structured information control nets. More precisely, The Workflow BIG-Logs can be classified into two types: of activity-based clustering patterns and performer-based clustering patterns, and we try to implement an activity-based clustering pattern algorithm based upon the Map-Reduce framework. Finally, we try to verify the proposed clustering technique by carrying out an experimental study on the workflow enactment event log dataset released by the BPI Challenges.

An Optimized User Behavior Prediction Model Using Genetic Algorithm On Mobile Web Structure

  • Hussan, M.I. Thariq;Kalaavathi, B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1963-1978
    • /
    • 2015
  • With the advancement of mobile web environments, identification and analysis of the user behavior play a significant role and remains a challenging task to implement with variations observed in the model. This paper presents an efficient method for mining optimized user behavior prediction model using genetic algorithm on mobile web structure. The framework of optimized user behavior prediction model integrates the temporary and permanent register information and is stored immediately in the form of integrated logs which have higher precision and minimize the time for determining user behavior. Then by applying the temporal characteristics, suitable time interval table is obtained by segmenting the logs. The suitable time interval table that split the huge data logs is obtained using genetic algorithm. Existing cluster based temporal mobile sequential arrangement provide efficiency without bringing down the accuracy but compromise precision during the prediction of user behavior. To efficiently discover the mobile users' behavior, prediction model is associated with region and requested services, a method called optimized user behavior Prediction Model using Genetic Algorithm (PM-GA) on mobile web structure is introduced. This paper also provides a technique called MAA during the increase in the number of models related to the region and requested services are observed. Based on our analysis, we content that PM-GA provides improved performance in terms of precision, number of mobile models generated, execution time and increasing the prediction accuracy. Experiments are conducted with different parameter on real dataset in mobile web environment. Analytical and empirical result offers an efficient and effective mining and prediction of user behavior prediction model on mobile web structure.

Time-Space Variability Analysis for the Weekly Passenger Flow of the Seoul Subway System: Based on Dynamic Visualization Methods (서울 대도시권 지하철 통행흐름의 요일 간 변이성 분석: 동적 시각화방법을 토대로)

  • Lee, Keumsook;Kim, Ho Sung;Park, Jong Soo
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.158-172
    • /
    • 2017
  • This study analyzes the time-space variability for the weekly passenger flow of the Seoul Subway system based on the dynamic visualization methods. For the purpose, we utilize one-week T-card transaction databases. By applying data mining algorithms, we extract passenger data for edge flows, on/off passengers at each subway station per minute interval time. It is practically intractable to analyze such spatio-temporal passenger flows by general statistical techniques. We employ dynamic visualization methods to analyze intuitively and to grasp effectively characteristics of the diurnal passenger flows on the Seoul Metropolitan Subway system during one week. As the result, we found that substantial differences exist on the spatio-temporal distribution patterns among days as well as between weekdays and weekend. We also investigates the time-space variability among eight major centers, and we found wide differences in their spatio-temporal distribution patterns.

Social Media based Real-time Event Detection by using Deep Learning Methods

  • Nguyen, Van Quan;Yang, Hyung-Jeong;Kim, Young-chul;Kim, Soo-hyung;Kim, Kyungbaek
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.41-48
    • /
    • 2017
  • Event detection using social media has been widespread since social network services have been an active communication channel for connecting with others, diffusing news message. Especially, the real-time characteristic of social media has created the opportunity for supporting for real-time applications/systems. Social network such as Twitter is the potential data source to explore useful information by mining messages posted by the user community. This paper proposed a novel system for temporal event detection by analyzing social data. As a result, this information can be used by first responders, decision makers, or news agents to gain insight of the situation. The proposed approach takes advantages of deep learning methods that play core techniques on the main tasks including informative data identifying from a noisy environment and temporal event detection. The former is the responsibility of Convolutional Neural Network model trained from labeled Twitter data. The latter is for event detection supported by Recurrent Neural Network module. We demonstrated our approach and experimental results on the case study of earthquake situations. Our system is more adaptive than other systems used traditional methods since deep learning enables to extract the features of data without spending lots of time constructing feature by hand. This benefit makes our approach adaptive to extend to a new context of practice. Moreover, the proposed system promised to respond to acceptable delay within several minutes that will helpful mean for supporting news channel agents or belief plan in case of disaster events.

Mining Association Rules in Multiple Databases using Links (복수 데이터베이스에서 링크를 이용한 연관 규칙 탐사)

  • Bae, Jin-Uk;Sin, Hyo-Seop;Lee, Seok-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.939-954
    • /
    • 1999
  • 데이타마이닝 분야에서는 대용량의 트랜잭션 데이타베이스와 같은 하나의 데이타베이스로부터 연관 규칙을 찾는 연구가 많이 수행되어왔다. 그러나, 창고형 할인매장이나 백화점 같이 고객 카드를 이용하는 판매점의 등장으로, 단지 트랜잭션에 대한 분석 뿐만이 아니라, 트랜잭션과 고객과의 관계에 대한 분석 또한 요구되고 있다. 즉, 두 개의 데이타베이스로부터 연관 규칙을 찾는 연구가 필요하다. 이 논문에서는 두 데이타베이스 사이에 링크를 생성하여 연관 항목집합을 찾는 알고리즘을 제안한다. 실험 결과, 링크를 이용한 알고리즘은 고객 데이타베이스가 메모리에 거주가능한 크기라면 시간에 따른 분석에 유용함을 보여주었다.Abstract There have been a lot of researches of mining association rules from one database such as transaction database until now. But as the large discount store using customer card emerges, the analysis is not only required about transactions, but also about the relation between transactions and customer data. That is, it is required to search association rules from two databases. This paper proposes an efficient algorithm constructing links from one database to the other. Our experiments show the algorithm using link is useful for temporal analysis of memory-resident customer database.

Clinical Manifestations and Imaging Characteristics of Gliomatosis Cerebri with Pathological Confirmation

  • Zhang, Chun-Pu;Li, Hua-Qing;Zhang, Wei-Tao;Liu, Ming-Hui;Pan, Wen-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4487-4491
    • /
    • 2014
  • Objective: To explore the clinical manifestations and imaging characteristics of gliomatosis cerebri to raise the awareness and improve its diagnostic accuracy for patients. Materials and Methods: Clinical data, imaging characteristics and pathological examination of 12 patients with GC from Jan., 2008 to Jan., 2012 were analyzed retrospectively. Results: Patients with GC were clinically manifested with headache, vomiting, repeated seizures, fatigue and unstable walking, most of whom had more than 2 lesions involving in parietal lobe, followed by temporal lobe, frontal lobe, periventricular white matter and corpus callosum. Magnetic resonance imaging (MRI) showed diffuse distribution, T1-weighted images (T1WI) with equal and low signals and T2-weighted images (T2WI) with bilateral symmetrical high diffuse signals. There was no reinforcement by enhancement scanning and signals were different in diffusion-weighted images (DWI). The higher the tumor staging, the stronger the signals. Pathological examination showed neuroastrocytoma in which tumor tissues were manifested by infiltrative growth in blood vessels and around neurons. Conclusions: In clinical diagnosis of GC, much attention should be paid to the diffuse distribution of imaging characteristics, incomplete matching between clinical and imaging characteristics and confirmation by combining with histopathological examination.