• 제목/요약/키워드: Temporal Data Mining

검색결과 85건 처리시간 0.031초

시퀀스 빈발도와 가중치를 이용한 최적 이동 패턴 탐사 (Optimal Moving Pattern Mining using Frequency of Sequence and Weights)

  • 이연식;박성숙
    • 인터넷정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.79-93
    • /
    • 2009
  • 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 개발하기 위한 목적으로 시공간 상에서 발생하는 이동 객체의 다양한 패턴들 중 의미있는 유용한 패턴을 추출하기 위한 시공간 패턴 탐사가 필요하다. 이에 본 논문에서는 방대한 이동 객체의 이력 데이터로부터 패턴 탐사를 통해 실세계에 적용 가능한 위치 기반 서비스의 개발에 대한 응용으로, STOMP(F)[25]에서 정의한 최적의 이동 패턴을 탐사하는 문제들을 기반으로 시간 및 공간 제약을 갖는 패턴을 추출하기 위한 새로운 탐사 기법인 STOMP(FW)를 제안한다. 제안된 기법은 패턴 빈발도 만을 이용한 기존 연구(STOMP(F)[25])에 가중치(거리, 시간, 비용 등)를 복합적으로 이용하는 패턴 탐사 방법으로, 특정한 지점들 사이를 이동한 객체의 이동 패턴들 중 패턴 빈발도가 특정 임계치 이상이고 가중치가 가장 적게 소요되는 이동 패턴을 최적 경로로 결정하는 방법이다. 제안된 방법의 패턴 탐사는 경험적인 이동 이력을 사용함으로써 기존의 최적 경로 탐색 기법들($A^*$, Dijkstra 알고리즘)이나 빈발도 만을 이용한 방법들 보다 접근하는 노드 수가 상대적으로 적어 보다 빠르고 정확하게 최적 패턴을 탐색할 수 있음을 보인다.

  • PDF

시간 속성을 갖는 이벤트의 의미있는 희소 관계에 기반한 연관 규칙 탐사 (Finding Association Rules based on the Significant Rare Relation of Events with Time Attribute)

  • 한대영;김대인;김재인;송명진;황부현
    • 정보처리학회논문지D
    • /
    • 제16D권5호
    • /
    • pp.691-700
    • /
    • 2009
  • 이벤트는 환자의 증상과 같이 시간 속성을 갖는 하나의 흐름을 의미하며 인터벌 이벤트는 시작과 종료 시점에 대한 시간 간격을 갖는다. 그리고 시간 데이터마이닝에 대한 많은 연구가 있었지만 환자 이력, 구매자 이력, 로그 이력과 같은 인터벌 이벤트에 대한 지식 탐사 방법에 대한 연구는 미흡하다. 이 논문에서는 이벤트들의 인과 관계에 대한 연관 규칙을 탐사하고 이 규칙에 기반하여 결과 이벤트 발생을 예측하는 시간 데이터마이닝 방법을 제안한다. 제안 방법은 이벤트 시간 속성을 사용하여 인터벌 이벤트로 요약하고 이벤트들의 인과 관계를 탐사하여 이벤트 발생을 예측한다. 성능평가를 통하여 제안 방법은 다양한 지지도를 적용하여 발생 빈도에 상관없이 이벤트 발생에 높은 영향을 주는 의미있는 희소 관계를 발견함으로써 기존의 데이터마이닝 기법에 비하여 보다 우수한 정보를 탐사할 수 있다.

Finding associations between genes by time-series microarray sequential patterns analysis

  • Nam, Ho-Jung;Lee, Do-Heon
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.161-164
    • /
    • 2005
  • Data mining techniques can be applied to identify patterns of interest in the gene expression data. One goal in mining gene expression data is to determine how the expression of any particular gene might affect the expression of other genes. To find relationships between different genes, association rules have been applied to gene expression data set [1]. A notable limitation of association rule mining method is that only the association in a single profile experiment can be detected. It cannot be used to find rules across different condition profiles or different time point profile experiments. However, with the appearance of time-series microarray data, it became possible to analyze the temporal relationship between genes. In this paper, we analyze the time-series microarray gene expression data to extract the sequential patterns which are similar to the association rules between genes among different time points in the yeast cell cycle. The sequential patterns found in our work can catch the associations between different genes which express or repress at diverse time points. We have applied sequential pattern mining method to time-series microarray gene expression data and discovered a number of sequential patterns from two groups of genes (test, control) and more sequential patterns have been discovered from test group (same CO term group) than from the control group (different GO term group). This result can be a support for the potential of sequential patterns which is capable of catching the biologically meaningful association between genes.

  • PDF

공간 데이터 마이닝 시스템의 설계 및 구현 (Design and Implementation of a Spatial Data Mining System)

  • 배덕호;백지행;오현교;송주원;김상욱;최명회;조현주
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권2호
    • /
    • pp.119-132
    • /
    • 2009
  • GIS 기술의 발달로 많은 양의 공간 데이터가 축적됨에 따라 공간 데이터 마이닝의 중요성이 커지고 있다. 본 논문에서는 새로운 공간 데이터 마이닝 시스템 SD-Miner를 제안한다. SD-Miner는 크게 입력과 출력을 담당하는 사용자 인터페이스, 공간 데이터 마이닝 기능을 처리하는 데이터 마이닝 모듈, DBMS를 이용하여 데이터를 저장하고 관리하는 데이터 저장 모듈의 세 부분으로 구성된다. 특히, 데이터 마이닝 함수 모듈에서는 공간 데이터 마이닝의 주요 기법인 공간 클러스터링, 공간 분류, 공간 특성화, 시공 간 연관규칙 탐사 기능을 제공한다. SD-Miner는 다음과 같은 특징을 가진다. SD-Miner는 사용자로 하여 금 공간 데이터 마이닝뿐만 아니라 비 공간 데이터에 대한 마이닝도 가능하게 하며, 각 마이닝 함수들을 라이브러리 형태로 제공하기 때문에 다른 시스템에서도 쉽게 사용 가능하다. 또한, 마이닝 매개 변수들을 테이블의 형태로 입력받기 때문에 시스템의 범용성이 높다. 개발된 SD-Miner의 실용성을 규명하기 위하여 실제 공간 데이터를 이용한 데이터 마이닝을 수행함으로써 여러 가지 의미있는 결과를 도출한다.

  • PDF

항목 발생 간격을 고려한 Temporal 연관규칙 (Temporal Association Rules Based on Item Time Interval)

  • 이경원;김재련
    • 산업경영시스템학회지
    • /
    • 제28권2호
    • /
    • pp.46-52
    • /
    • 2005
  • In this paper, we present a temporal association rule based on item time intervals. A temporal association rule is an association rule that holds specific time intervals. If we consider itemset in the frequently purchased period, we can discover more significant itemset satisfying minimum support. Because the previous study did not consider the time interval between purchased item, it could find itemset that did not satisfy the minimum support in case some item was frequently purchased in a specific period and rarely or not purchased in other period. Our approach uses interval support which is counted by period with support and confidence in the association rule to discovery large itemset.

Semantic Trajectory Based Behavior Generation for Groups Identification

  • Cao, Yang;Cai, Zhi;Xue, Fei;Li, Tong;Ding, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5782-5799
    • /
    • 2018
  • With the development of GPS and the popularity of mobile devices with positioning capability, collecting massive amounts of trajectory data is feasible and easy. The daily trajectories of moving objects convey a concise overview of their behaviors. Different social roles have different trajectory patterns. Therefore, we can identify users or groups based on similar trajectory patterns by mining implicit life patterns. However, most existing daily trajectories mining studies mainly focus on the spatial and temporal analysis of raw trajectory data but missing the essential semantic information or behaviors. In this paper, we propose a novel trajectory semantics calculation method to identify groups that have similar behaviors. In our model, we first propose a fast and efficient approach for stay regions extraction from daily trajectories, then generate semantic trajectories by enriching the stay regions with semantic labels. To measure the similarity between semantic trajectories, we design a semantic similarity measure model based on spatial and temporal similarity factor. Furthermore, a pruning strategy is proposed to lighten tedious calculations and comparisons. We have conducted extensive experiments on real trajectory dataset of Geolife project, and the experimental results show our proposed method is both effective and efficient.

시공간 이동 패턴 추출을 위한 효율적인 알고리즘 (An Efficient Algorithm for Spatio-Temporal Moving Pattern Extraction)

  • 박지웅;김동오;홍동숙;한기준
    • 한국공간정보시스템학회 논문지
    • /
    • 제8권2호
    • /
    • pp.39-52
    • /
    • 2006
  • 최근 들어 이동 객체의 이력 (history) 데이타에서 이동 객체의 이동 패턴, 즉 연속되는 시간 영역에서 반복적으로 발생되는 공간 이동 경로와 같은 다양한 지식을 추출하여 활용하는 응용 서비스의 활용성이 점점 증대되고 있다. 그러나 기존의 이동 패턴 추출 방법은 최소지지도(minimum support)가 낮은 경우에 많은 수의 후보 이동 패턴이 생성되고 이로 인하여 수행 시간과 소요 메모리가 급격히 증가하게 되는 단점이 있다. 본 논문에서는 대용량의 시공간 데이타 집합으로부터 이동 객체의 이동 패턴을 효율적으로 추출하기 위한 STMPE(Spatio-Temporal Moving Pattern Extracting) 알고리즘을 제안한다. STMPE 알고리즘은 시공간 데이타를 일반화시킴으로서 메모리 사용량을 최소화할 수 있으며, 단기 이동 패턴을 작성하여 유지하기 때문에 데이타베이스 스캔 횟수를 최소화할 수 있다. STMPE 알고리즘은 모든 부분에서 시간 정보를 갖는 다른 시공간 이동 패턴 추출 알고리즘보다 최소지지도가 낮아질수록, 이동 객체의 수가 증가할수록, 시간 분할 횟수가 많아질수록 더욱 뛰어난 성능을 보였다.

  • PDF

인터벌 패턴 마이닝에서 모호성 제거를 위한 효율적인 순차 패턴 마이닝 기법 (Efficient Sequence Pattern Mining Technique for the Removal of Ambiguity in the Interval Patterns Mining)

  • 김환;최필선;김대인;황부현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권8호
    • /
    • pp.565-570
    • /
    • 2013
  • 기존의 순차 패턴 마이닝 기법은 주로 시점 기반 이벤트를 중심으로 연구되었다. 그러나 실생활에는 시작 시점과 종료 시점과 같은 시간 간격을 갖는 인터벌 이벤트가 많이 발생한다. Allen 연산자를 기반으로 두 인터벌 이벤트 사이의 인터벌 패턴을 탐사하는 기존의 기법은 세 개 이상의 인터벌 이벤트 사이에서 인터벌 패턴이 여러 의미로 해석될 수 있는 문제점을 가지고 있다. 이 논문은 인터벌 패턴 탐사에서 모호성 제거를 위한 효율적인 순차 탐색 마이닝 기법인 I_TPrefixSpan 알고리즘을 제안한다. 제안하는 기법은 인터벌 이벤트에 대한 이벤트 시퀀스를 생성함으로써 모호성을 제거하고 이벤트 시퀀스에 존재하는 항목만을 대상으로 순차 탐색함으로써 후보 집합 생성을 최소화 할 수 있다. 성능 평가를 통하여 제안하는 방법이 기존의 방법에 비하여 보다 효율적임을 보인다.

빅데이터 마이닝에 의한 공시지가 민원의 시공간적 분석모델 제시 (A Suggestion for Spatiotemporal Analysis Model of Complaints on Officially Assessed Land Price by Big Data Mining)

  • 조태인;최병길;나영우;문영섭;김세훈
    • 지적과 국토정보
    • /
    • 제48권2호
    • /
    • pp.79-98
    • /
    • 2018
  • 이 연구는 빅데이터 마이닝에 기초하여 공시지가 민원에 대한 시공간적 특성을 분석하는 모델을 제시하는 데 목적이 있다. 특히 이 연구는 행정 민원이 제기되는 원인을 학술적 요인보다는 시공간적 측면에서 찾았고, 그러한 민원 발생의 경향을 시공간적으로 모니터링하는 모델을 제시하였다. 2006년부터 2015년까지 인천광역시 중구의 공시지가에 대한 6,481개의 민원정보가 시간 및 공간적 특성을 고려해 수집되었고 분석을 위해 사용되었다. 텍스트 마이닝 기법을 이용해 주요 키워드의 빈도수를 도출했으며, 소셜 네트워크 분석을 통해 주요 키워드 간의 관계를 분석하였다. 키워드의 가중치와 연관되는 TF(term frequency)와 TF-IDF(term frequency-inverse document frequency)를 산출함으로써, 공시지가의 민원 발생에 대한 주요 키워드를 식별하였다. 마지막으로 Getis-Ord의 $Gi^*$의 통계량에 기초한 핫스팟 분석을 통해 공시지가 민원의 시공간적 특성을 분석하였다. 연구 결과, 공시지가 민원의 특성은 시공간적으로 연계된 군집 형태를 형성하면서 변화하고 있음을 알 수 있었다. 텍스트 마이닝과 소셜 네트워크 분석 방법을 이용하여 자연어 기반의 공시지가 민원에 대한 발생 원인을 정량적으로 규명할 수 있음을 알 수 있었으며, 키워드 가중치인 단어 빈도(TF) 및 단어 빈도와 역문서 빈도의 조합값(TF-IDF)의 상대적인 차이가 있어 시공간적인 민원 특성을 분석하기 위한 주요 설명변수로 활용될 수 있음을 알 수 있었다.

Business Model Mining: Analyzing a Firm's Business Model with Text Mining of Annual Report

  • Lee, Jihwan;Hong, Yoo S.
    • Industrial Engineering and Management Systems
    • /
    • 제13권4호
    • /
    • pp.432-441
    • /
    • 2014
  • As the business model is receiving considerable attention these days, the ability to collect business model related information has become essential requirement for a company. The annual report is one of the most important external documents which contain crucial information about the company's business model. By investigating business descriptions and their future strategies within the annual report, we can easily analyze a company's business model. However, given the sheer volume of the data, which is usually over a hundred pages, it is not practical to depend only on manual extraction. The purpose of this study is to complement the manual extraction process by using text mining techniques. In this study, the text mining technique is applied in business model concept extraction and business model evolution analysis. By concept, we mean the overview of a company's business model within a specific year, and, by evolution, we mean temporal changes in the business model concept over time. The efficiency and effectiveness of our methodology is illustrated by a case example of three companies in the US video rental industry.