사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 개발하기 위한 목적으로 시공간 상에서 발생하는 이동 객체의 다양한 패턴들 중 의미있는 유용한 패턴을 추출하기 위한 시공간 패턴 탐사가 필요하다. 이에 본 논문에서는 방대한 이동 객체의 이력 데이터로부터 패턴 탐사를 통해 실세계에 적용 가능한 위치 기반 서비스의 개발에 대한 응용으로, STOMP(F)[25]에서 정의한 최적의 이동 패턴을 탐사하는 문제들을 기반으로 시간 및 공간 제약을 갖는 패턴을 추출하기 위한 새로운 탐사 기법인 STOMP(FW)를 제안한다. 제안된 기법은 패턴 빈발도 만을 이용한 기존 연구(STOMP(F)[25])에 가중치(거리, 시간, 비용 등)를 복합적으로 이용하는 패턴 탐사 방법으로, 특정한 지점들 사이를 이동한 객체의 이동 패턴들 중 패턴 빈발도가 특정 임계치 이상이고 가중치가 가장 적게 소요되는 이동 패턴을 최적 경로로 결정하는 방법이다. 제안된 방법의 패턴 탐사는 경험적인 이동 이력을 사용함으로써 기존의 최적 경로 탐색 기법들($A^*$, Dijkstra 알고리즘)이나 빈발도 만을 이용한 방법들 보다 접근하는 노드 수가 상대적으로 적어 보다 빠르고 정확하게 최적 패턴을 탐색할 수 있음을 보인다.
이벤트는 환자의 증상과 같이 시간 속성을 갖는 하나의 흐름을 의미하며 인터벌 이벤트는 시작과 종료 시점에 대한 시간 간격을 갖는다. 그리고 시간 데이터마이닝에 대한 많은 연구가 있었지만 환자 이력, 구매자 이력, 로그 이력과 같은 인터벌 이벤트에 대한 지식 탐사 방법에 대한 연구는 미흡하다. 이 논문에서는 이벤트들의 인과 관계에 대한 연관 규칙을 탐사하고 이 규칙에 기반하여 결과 이벤트 발생을 예측하는 시간 데이터마이닝 방법을 제안한다. 제안 방법은 이벤트 시간 속성을 사용하여 인터벌 이벤트로 요약하고 이벤트들의 인과 관계를 탐사하여 이벤트 발생을 예측한다. 성능평가를 통하여 제안 방법은 다양한 지지도를 적용하여 발생 빈도에 상관없이 이벤트 발생에 높은 영향을 주는 의미있는 희소 관계를 발견함으로써 기존의 데이터마이닝 기법에 비하여 보다 우수한 정보를 탐사할 수 있다.
Data mining techniques can be applied to identify patterns of interest in the gene expression data. One goal in mining gene expression data is to determine how the expression of any particular gene might affect the expression of other genes. To find relationships between different genes, association rules have been applied to gene expression data set [1]. A notable limitation of association rule mining method is that only the association in a single profile experiment can be detected. It cannot be used to find rules across different condition profiles or different time point profile experiments. However, with the appearance of time-series microarray data, it became possible to analyze the temporal relationship between genes. In this paper, we analyze the time-series microarray gene expression data to extract the sequential patterns which are similar to the association rules between genes among different time points in the yeast cell cycle. The sequential patterns found in our work can catch the associations between different genes which express or repress at diverse time points. We have applied sequential pattern mining method to time-series microarray gene expression data and discovered a number of sequential patterns from two groups of genes (test, control) and more sequential patterns have been discovered from test group (same CO term group) than from the control group (different GO term group). This result can be a support for the potential of sequential patterns which is capable of catching the biologically meaningful association between genes.
GIS 기술의 발달로 많은 양의 공간 데이터가 축적됨에 따라 공간 데이터 마이닝의 중요성이 커지고 있다. 본 논문에서는 새로운 공간 데이터 마이닝 시스템 SD-Miner를 제안한다. SD-Miner는 크게 입력과 출력을 담당하는 사용자 인터페이스, 공간 데이터 마이닝 기능을 처리하는 데이터 마이닝 모듈, DBMS를 이용하여 데이터를 저장하고 관리하는 데이터 저장 모듈의 세 부분으로 구성된다. 특히, 데이터 마이닝 함수 모듈에서는 공간 데이터 마이닝의 주요 기법인 공간 클러스터링, 공간 분류, 공간 특성화, 시공 간 연관규칙 탐사 기능을 제공한다. SD-Miner는 다음과 같은 특징을 가진다. SD-Miner는 사용자로 하여 금 공간 데이터 마이닝뿐만 아니라 비 공간 데이터에 대한 마이닝도 가능하게 하며, 각 마이닝 함수들을 라이브러리 형태로 제공하기 때문에 다른 시스템에서도 쉽게 사용 가능하다. 또한, 마이닝 매개 변수들을 테이블의 형태로 입력받기 때문에 시스템의 범용성이 높다. 개발된 SD-Miner의 실용성을 규명하기 위하여 실제 공간 데이터를 이용한 데이터 마이닝을 수행함으로써 여러 가지 의미있는 결과를 도출한다.
In this paper, we present a temporal association rule based on item time intervals. A temporal association rule is an association rule that holds specific time intervals. If we consider itemset in the frequently purchased period, we can discover more significant itemset satisfying minimum support. Because the previous study did not consider the time interval between purchased item, it could find itemset that did not satisfy the minimum support in case some item was frequently purchased in a specific period and rarely or not purchased in other period. Our approach uses interval support which is counted by period with support and confidence in the association rule to discovery large itemset.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권12호
/
pp.5782-5799
/
2018
With the development of GPS and the popularity of mobile devices with positioning capability, collecting massive amounts of trajectory data is feasible and easy. The daily trajectories of moving objects convey a concise overview of their behaviors. Different social roles have different trajectory patterns. Therefore, we can identify users or groups based on similar trajectory patterns by mining implicit life patterns. However, most existing daily trajectories mining studies mainly focus on the spatial and temporal analysis of raw trajectory data but missing the essential semantic information or behaviors. In this paper, we propose a novel trajectory semantics calculation method to identify groups that have similar behaviors. In our model, we first propose a fast and efficient approach for stay regions extraction from daily trajectories, then generate semantic trajectories by enriching the stay regions with semantic labels. To measure the similarity between semantic trajectories, we design a semantic similarity measure model based on spatial and temporal similarity factor. Furthermore, a pruning strategy is proposed to lighten tedious calculations and comparisons. We have conducted extensive experiments on real trajectory dataset of Geolife project, and the experimental results show our proposed method is both effective and efficient.
최근 들어 이동 객체의 이력 (history) 데이타에서 이동 객체의 이동 패턴, 즉 연속되는 시간 영역에서 반복적으로 발생되는 공간 이동 경로와 같은 다양한 지식을 추출하여 활용하는 응용 서비스의 활용성이 점점 증대되고 있다. 그러나 기존의 이동 패턴 추출 방법은 최소지지도(minimum support)가 낮은 경우에 많은 수의 후보 이동 패턴이 생성되고 이로 인하여 수행 시간과 소요 메모리가 급격히 증가하게 되는 단점이 있다. 본 논문에서는 대용량의 시공간 데이타 집합으로부터 이동 객체의 이동 패턴을 효율적으로 추출하기 위한 STMPE(Spatio-Temporal Moving Pattern Extracting) 알고리즘을 제안한다. STMPE 알고리즘은 시공간 데이타를 일반화시킴으로서 메모리 사용량을 최소화할 수 있으며, 단기 이동 패턴을 작성하여 유지하기 때문에 데이타베이스 스캔 횟수를 최소화할 수 있다. STMPE 알고리즘은 모든 부분에서 시간 정보를 갖는 다른 시공간 이동 패턴 추출 알고리즘보다 최소지지도가 낮아질수록, 이동 객체의 수가 증가할수록, 시간 분할 횟수가 많아질수록 더욱 뛰어난 성능을 보였다.
기존의 순차 패턴 마이닝 기법은 주로 시점 기반 이벤트를 중심으로 연구되었다. 그러나 실생활에는 시작 시점과 종료 시점과 같은 시간 간격을 갖는 인터벌 이벤트가 많이 발생한다. Allen 연산자를 기반으로 두 인터벌 이벤트 사이의 인터벌 패턴을 탐사하는 기존의 기법은 세 개 이상의 인터벌 이벤트 사이에서 인터벌 패턴이 여러 의미로 해석될 수 있는 문제점을 가지고 있다. 이 논문은 인터벌 패턴 탐사에서 모호성 제거를 위한 효율적인 순차 탐색 마이닝 기법인 I_TPrefixSpan 알고리즘을 제안한다. 제안하는 기법은 인터벌 이벤트에 대한 이벤트 시퀀스를 생성함으로써 모호성을 제거하고 이벤트 시퀀스에 존재하는 항목만을 대상으로 순차 탐색함으로써 후보 집합 생성을 최소화 할 수 있다. 성능 평가를 통하여 제안하는 방법이 기존의 방법에 비하여 보다 효율적임을 보인다.
이 연구는 빅데이터 마이닝에 기초하여 공시지가 민원에 대한 시공간적 특성을 분석하는 모델을 제시하는 데 목적이 있다. 특히 이 연구는 행정 민원이 제기되는 원인을 학술적 요인보다는 시공간적 측면에서 찾았고, 그러한 민원 발생의 경향을 시공간적으로 모니터링하는 모델을 제시하였다. 2006년부터 2015년까지 인천광역시 중구의 공시지가에 대한 6,481개의 민원정보가 시간 및 공간적 특성을 고려해 수집되었고 분석을 위해 사용되었다. 텍스트 마이닝 기법을 이용해 주요 키워드의 빈도수를 도출했으며, 소셜 네트워크 분석을 통해 주요 키워드 간의 관계를 분석하였다. 키워드의 가중치와 연관되는 TF(term frequency)와 TF-IDF(term frequency-inverse document frequency)를 산출함으로써, 공시지가의 민원 발생에 대한 주요 키워드를 식별하였다. 마지막으로 Getis-Ord의 $Gi^*$의 통계량에 기초한 핫스팟 분석을 통해 공시지가 민원의 시공간적 특성을 분석하였다. 연구 결과, 공시지가 민원의 특성은 시공간적으로 연계된 군집 형태를 형성하면서 변화하고 있음을 알 수 있었다. 텍스트 마이닝과 소셜 네트워크 분석 방법을 이용하여 자연어 기반의 공시지가 민원에 대한 발생 원인을 정량적으로 규명할 수 있음을 알 수 있었으며, 키워드 가중치인 단어 빈도(TF) 및 단어 빈도와 역문서 빈도의 조합값(TF-IDF)의 상대적인 차이가 있어 시공간적인 민원 특성을 분석하기 위한 주요 설명변수로 활용될 수 있음을 알 수 있었다.
As the business model is receiving considerable attention these days, the ability to collect business model related information has become essential requirement for a company. The annual report is one of the most important external documents which contain crucial information about the company's business model. By investigating business descriptions and their future strategies within the annual report, we can easily analyze a company's business model. However, given the sheer volume of the data, which is usually over a hundred pages, it is not practical to depend only on manual extraction. The purpose of this study is to complement the manual extraction process by using text mining techniques. In this study, the text mining technique is applied in business model concept extraction and business model evolution analysis. By concept, we mean the overview of a company's business model within a specific year, and, by evolution, we mean temporal changes in the business model concept over time. The efficiency and effectiveness of our methodology is illustrated by a case example of three companies in the US video rental industry.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.