• Title/Summary/Keyword: Temporal Coherence

Search Result 91, Processing Time 0.026 seconds

Video stitching method maintaining temporal coherence (시간적 일관성을 유지하는 비디오 스티칭 방법)

  • Kim, Kwang-Hwan;Lee, Yun-Gu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.279-281
    • /
    • 2020
  • 본 논문은 고정되지 않고 흔들리는 영상을 각 프레임마다 이미지 스티칭(Image Stitching)으로 비디오를 구성하였을 때 생기는 영상이 심하게 흔들리는 문제 등을 보완하기 위해 새로운 비디오 스티칭(Video Stitching) 방법을 제안한다. NISwGSP 알고 리즘으로 각 프레임 이미지를 스티칭하고 스티칭 형태를 어느 정도 유지시켜주는 새로운 코스트 함수를 도입하여 스티칭 영상의 흔들림 문제를 해결한다. 메쉬(Mesh) 기반 이미지 스티칭 알고리즘인 NISwGSP를 써서 비디오 스티칭을 할 때 메쉬의 버텍스(Vertices)를 이전 프레임의 버텍스로 유지하도록 하여 스티칭 형태를 고정시키는 것이 본 논문에서 제시하는 방법이다.

  • PDF

Formal Verification and Testing of RACE Protocol Using SMV (SMV를 이용한 RACE 프로토콜의 정형 검증 및 테스팅)

  • Nam, Won-Hong;Choe, Jin-Yeong;Han, U-Jong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.1-17
    • /
    • 2002
  • In this paper, we present our experiences in using symbolic model checker(SMV) to analyze a number of properties of RACE cache coherence protocol designed by ETRI(Electronics and Communications Research Institute) and to verify that RACE protocol satisfies important requirements. To investigate this, we specified the model of the RACE protocol as the input language of SMV and specified properties as a formula in temporal logic CTL. We successfully used the symbolic model checker to analyze a number of properties of RACE protocol. We verified that abnormal state/input combinations was not occurred and every possible request of processors was executed correctly We verified that RACE protocol satisfies liveness, safety and the property that any abnormal state/input combination was never occurred. Besides, We found some ambiguities of the specification and a case of starvation that the protocol designers could not expect before. By this verification experience, we show advantages of model checking method. And, we propose a new method to generate automatically test cases which are used in simulation and testing.

Peripapillary Retinal Nerve Fiber Layer Thicknesses Did Not Change in Long-term Hydroxychloroquine Users

  • Lee, Eun Jung;Kim, Sang Jin;Han, Jong Chul;Eo, Doo Ri;Lee, Min Gyu;Ham, Don-Il;Kang, Se Woong;Kee, Changwon;Lee, Jaejoon;Cha, Hoon-Suk;Koh, Eun-Mi
    • Korean Journal of Ophthalmology
    • /
    • v.32 no.6
    • /
    • pp.459-469
    • /
    • 2018
  • Purpose: To evaluate changes in the peripapillary retinal nerve fiber layer (RNFL) thicknesses using spectral-domain optical coherence tomography (SD-OCT) in hydroxychloroquine (HCQ) users. Methods: The medical records of HCQ users were retrospectively reviewed. In these HCQ users, an automated perimetry, fundus autofluorescence photography, and SD-OCT with peripapillary RNFL thickness measurements were performed. The peripapillary RNFL thicknesses were compared between the HCQ users and the control groups. The relationships between the RNFL thicknesses and the duration or cumulative dosage of HCQ use were analyzed. Results: This study included 77 HCQ users and 20 normal controls. The mean duration of HCQ usage was $63.6{\pm}38.4$ months, and the cumulative dose of HCQ was $528.1{\pm}3.44g$. Six patients developed HCQ retinopathy. Global and six sectoral RNFL thicknesses of the HCQ users did not significantly decrease compared to those of the normal controls. No significant correlation was found between the RNFL thickness and the duration of use or cumulative dose. The eyes of those with HCQ retinopathy had temporal peripapillary RNFL thicknesses significantly greater than that of normal controls. Conclusions: The peripapillary RNFL thicknesses did not change in the HCQ users and did not correlate with the duration of HCQ use or cumulative doses of HCQ. RNFL thickness is not a useful biomarker for the early detection of HCQ retinal toxicity.

Intertidal DEM Generation Using Satellite Radar Interferometry (인공위성 레이더 간섭기술을 이용한 조간대 지형도 작성에 관한 연구)

  • Park, Jeong-Won;Choi, Jung-Hyun;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.121-128
    • /
    • 2012
  • High resolution intertidal DEM is a basic material for science research like sedimentation/erosion by ocean current, and is invaluable in a monitoring of environmental changes and practical management of coastal wetland. Since the intertidal zone changes rapidly by the inflow of fluvial debris and tide condition, remote sensing is an effective tool for observing large areas in short time. Although radar interferometry is one of the well-known techniques for generating high resolution DEM, conventional repeat-pass interferometry has difficulty on acquiring enough coherence over tidal flat due to the limited exposure time and the rapid changes in surface condition. In order to overcome these constraints, we tested the feasibility of radar interferometry using Cosmo-SkyMed tandem-like one-day data and ERS-ENVISAT cross tandem data with very short revisit period compared to the conventional repeat pass data. Small temporal baseline combined with long perpendicular baseline allowed high coherence over most of the exposed tidal flat surface in both observations. However the interferometric phases acquired from Cosmo-SkyMed data suffer from atmospheric delay and changes in soil moisture contents. The ERS-ENVISAT pair, on the other hand, provides nice phase which agree well with the real topography, because the atmospheric effect in 30-minute gap is almost same to both images so that they are cancelled out in the interferometric process. Thus, the cross interferometry with very small temporal baseline and large perpendicular baseline is one of the most reliable solutions for the intertidal DEM construction which requires very accurate mapping of the elevation.

Persistent Scatterer Selection and Network Analysis for X-band PSInSAR (X-band PSInSAR를 위한 고정산란체 추출 및 네트워크 분석 기법)

  • Kim, Sang-Wan;Cho, Min-Ji
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.521-534
    • /
    • 2011
  • The high-resolution X-band SAR systems such as COSMO-SkyMED and TerraSAR-X have been launched recently. In addition KOMPSAT-5 will be launched in the early of 2012. In this study we developed the new method for persistent scatterer candidate (PSC) selection and network construction, which is more suitable for PSInSAR analysis using multi-temporal X-band SAR data. PSC selection consists in two main steps: first, selection of initial PSCs based on amplitude dispersion index, mean amplitude, mean coherence. second, selection of final PSCs based on temporal coherence directly estimated from network analysis of initial PSCs. To increase the stability of network the Multi- TIN and complex network for non-urban area were addressed as well. The proposed algorithm was applied to twenty-one TerraSAR-X SAR of New Orleans. As a result many PSs were successfully extracted even in non-urban area. This research can be used as the practical application of KOMPSAT-5 for surface displacement monitoring using X-band PSInSAR.

A Review of Change Detection Techniques using Multi-temporal Synthetic Aperture Radar Images (다중시기 위성 레이더 영상을 활용한 변화탐지 기술 리뷰)

  • Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.737-750
    • /
    • 2019
  • Information of target changes in inaccessible areas is very important in terms of national security. Fast and accurate change detection of targets is very important to respond quickly. Spaceborne synthetic aperture radar can acquire images with high accuracy regardless of weather conditions and solar altitude. With the recent increase in the number of SAR satellites, it is possible to acquire images with less than one day temporal resolution for the same area. This advantage greatly increases the availability of change detection for inaccessible areas. Commonly available information in satellite SAR is amplitude and phase information, and change detection techniques have been developed based on each technology. Those are amplitude Change Detection (ACD), Coherence Change Detection (CCD). Each algorithm differs in the preprocessing process for accurate automatic classification technique according to the difference of information characteristics and the final detection result of each algorithm. Therefore, by analyzing the academic research trends for ACD and CCD, each technologies can be complemented. The goal of this paper is identifying current issues of SAR change detection techniques by collecting research papers. This study would help to find the prerequisites for SAR change detection and use it to conduct periodic detection research on inaccessible areas.

Spot marking of the multilayer thin films by Nd:YAG laser (Nd:YAG 레이저에 의한 다층 박막의 미소 점 마킹)

  • Kim, Hyun-Jin;Shin, Yong-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.361-368
    • /
    • 2004
  • We separated the multilayer structure of CD-R(compact disk-recordable) and investigated optimal spot marking conditions and physical and chemical transitions in response to various laser beam energh levels. Spot marking(80 ${\mu}{\textrm}{m}$ spot size) was produced on the surface of each layer using a Q-switched Nd:YAG laser between 27 mJ and 373mJ. By investigating resulting pit formation with Optical Microscopy(OM) and Optical Coherence Tomography(OCT), we analyzed the formation process of spot marking in the multilayer structure of different chemical composition. The localized heating of the substrate in the multilayer thin film caused the short temporal thermal expansion, and absorbed optical energy between reflective and dye interfaces melted dye and increased the volume. During the cooling phase, formation of pit and surrounding rim can be explained by three distinct processes; effect of surface tension, evaporation by spontaneous temperature increase due to laser energy, and mass flow from the recoil pressure. Our results shows that the spot marking formation process in the multilayer thin film is closely related to the layers' physical, chemical, and optical properties, such as surface tension, melt viscosity, layer thickness, and chemical composition.

Changes of EEG Coherence in Narcolepsy Measured with Computerized EEG Mapping Technique (기면병에서 전산화 뇌파 지도화 기법으로 측정한 뇌파 동시성 시성 변화)

  • Park, Doo-Heum;Kwon, Jun-Soo;Jeong, Do-Un
    • Sleep Medicine and Psychophysiology
    • /
    • v.8 no.2
    • /
    • pp.121-128
    • /
    • 2001
  • Objectives: In narcoleptic patients diagnosed with ICSD (international classification of sleep disorders, 1990) criteria, nocturnal polysomnography, and MSLT (multiple sleep latency test), we tried to find characteristic features of quantitative electroencephalography (QEEG) in a wakeful state. Methods: We compared eight drug-free narcoleptic patients with sex- and age-matched normal controls, using computerized electroencephalographic mapping technique and spectral analysis. Absolute power, relative power, interhemispheric asymmetry, interhemispheric and intrahemispheric coherence, and mean frequency in each frequency band (delta, theta, alpha and beta) were measured and analyzed. Results: Compared with normal controls, narcoleptic patients showed decrease in monopolar interhemispheric coherence of alpha frequency bands in occipital ($O_1/O_2$), parietal ($P_3/P_4$), and temporal ($T_5/T_6$) areas and beta frequency band in the occipital ($O_1/O_2$) area. Monopolar intrahemispheric coherences of alpha frequency bands in left hemispheric areas ($T_3/T_5$, $C_3/P_3$ & $F_3/O_1$) decreased. Decrease of monopolar interhemispheric asymmetry of delta frequency band in the occipital ($O_1/O_2$) area was also noted. The monopolar absolute powers of beta frequency bands decreased in occipital ($O_2,\;O_z$) areas. Conclusion: Decreases in coherences of narcoleptic patients compared with normal controls may indicate fewer posterior neocortical interhemispheric neuronal connections, and fewer left intrahemispheric neuronal connections than normal controls in a wakeful state. Therefore, we suggest that abnormal neurophysiological sites of narcolepsy may involve complex areas such as neocortex and subcortex as well as the brainstem.

  • PDF

Assessment of capacity curves for transmission line towers under wind loading

  • Banik, S.S.;Hong, H.P.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.1-20
    • /
    • 2010
  • The recommended factored design wind load effects for overhead lattice transmission line towers by codes and standards are evaluated based on the applicable wind load factor, gust response factor and design wind speed. The current factors and design wind speed were developed considering linear elastic responses and selected notional target safety levels. However, information on the nonlinear inelastic responses of such towers under extreme dynamic wind loading, and on the structural capacity curves of the towers in relation to the design capacities, is lacking. The knowledge and assessment of the capacity curve, and its relation to the design strength, is important to evaluate the integrity and reliability of these towers. Such an assessment was performed in the present study, using a nonlinear static pushover (NSP) analysis and incremental dynamic analysis (IDA), both of which are commonly used in earthquake engineering. For the IDA, temporal and spatially varying wind speeds are simulated based on power spectral density and coherence functions. Numerical results show that the structural capacity curves of the tower determined from the NSP analysis depend on the load pattern, and that the curves determined from the nonlinear static pushover analysis are similar to those obtained from IDA.

Unsteady wind loading on a wall

  • Baker, C.J.
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.413-440
    • /
    • 2001
  • This paper presents an extensive analysis of unsteady wind loading data on a 18 m long and 2 m high wall in a rural environment, with the wind at a range of angles to the wall normal. The data is firstly analyzed using standard statistical techniques (moments of probability distributions, auto- and cross-correlations, auto- and cross-spectra etc.). The analysis is taken further using a variety of less conventional methods - conditional sampling, proper orthogonal decomposition and wavelet analysis. It is shown that, even though the geometry is simple, the nature of the unsteady flow is surprisingly complex. The fluctuating pressures on the front face of the wall are to a great extent caused by the turbulent fluctuations in the upstream flow, and reflect the oncoming flow structures. The results further suggest that there are distinct structures in the oncoming flow with a variety of scales, and that the second order quasi-steady approach can predict the pressure fluctuations quite well. The fluctuating pressures on the rear face are also influenced by the fluctuations in the oncoming turbulence, but also by unsteady fluctuations due to wake unsteadiness. These fluctuations have a greater temporal and spatial coherence than on the front face and the quasi-steady method over-predicts the extent of these fluctuations. Finally the results are used to check some assumptions made in the current UK wind loading code of practice.